
 
1

Statistical Science 
Chapter 1.3 Quantitative Reasoning 
 
 
 
 
 
 
 
 
 
 
on chalk board 
 
ReCap.   Model Based Statistics in Science 
 

      One Goal of this course is to introduce you to effective ways of thinking 
quantitatively about biological phenomena.  

A second goal is to give you practice you need to increase your skill and confidence 
in the application of quantitative methods.  

A third goal is to develop your critical capacity, both for your own work and that of 
others. 

 
It is NOT a course in mathematics.   It is a course in applied mathematics. 
 
Limited treatment of mathematical apparatus.   
Emphasis will be on applying this apparatus.   
Will work with data, summarizations of data (tables, graphs, statistics, models).   
The emphasis will be on the practical application of quantitative methods to  
interesting questions and perplexing problems in science.  
 
It IS a course in how to think with biologically interesting quantities. 
 
Today    Examples of Quantitative Reasoning 
 
Wrap-Up 
 In this course we will adopt a model based approach to statistics. 
 There are several advantages. 
 
1   Statistics and modelling are closely related – stats are based on models. 
2   Advantage of integration is carryover 
3  We have a broader capacity to evaluate uncertainty in the analysis of biological data, 

than if we learn a series of tests. 
4  Model approach leads to learning of concepts & principles, rather than collection of 

techniques. 

Chapter 1.1   The Role of Statistics in Science 
Chapter 1.2    Model Based Statistics in Science 
 
Lab 1   Verbal Models (Guess the Process)  
 
Chapter 1.3   Quantitative Reasoning 
 Two Examples 
 Reasons for Model-Based Approach 

Not here last time? 
Handout Syllabus 
 
Questionnaire results 
Yellow chalk 
Lab 1 
  Bring Cards 
 Location: cf syllabus 
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An example of quantitative reasoning 
Statistics are traditionally taught separately from 'models' 
  Example of statistics: regression 
  Example of model:   N = No er t     N = bacterial numbers, t = time. 
    This is an equation for exponential growth in bacterial numbers N 
 
This course will integrate both equations and statistics in reasoning about biological 
problems.  Here is an example. 
 

Start with data on bacterial numbers N at hourly intervals t. 
 
                              
 
 
 
 
 

Then draw the graph: a line (yellow) 
through the data  (black dots on white or 
white dots on a chalk board)  
 
This line is a graphical model. 
 
We define the rate of growth in symbolic form as:     1/N dN/dt =  r  
 
Here is the same idea in a different form   N  =  Noe r t 
This is a formal model without a specific value of r.  
 
Taking the logarithm of both sides of the equation we have:    ln(N) = ln(No) +  r t 
 
We use a statistical technique (regression) to estimate r, the slope of the line. 
 
The regression estimate is r = 0.006/hr   or 0.6%/hour. 
We rewrite the equation, this time with the estimated value of r.  N  =  Noe0.6t  
This is a formal model with a specific value of r.  
A formal model states an idea about the relation of measured quantities (N and t), 

expressed in symbolic form. Here is a diagram of what we just did. 
 
 

 t=hr N 
 1 2 
 2 3 
 3 5 
 4 15 
 5 16 
 6 27 
 7 73 

Construct triangle 
Write DATA 
Write VERBAL MODEL above DATA 
   connect to DATA with line 
Write GRAPHICAL MODEL 
   connect to VERBAL MODEL by line 
Write FORMAL MODEL 
   connect to GRAPHICAL with a line 
   to complete triangle 
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Another example of quantitative reasoning 
 
Draw data in white chalk.  
 
State verbal model. 
 Catch is higher in gravel than 
 in finer (sand) or coarser 
 (cobble) substrates 
 
Ask for graphical model. 
 
Draw this model in yellow. 
 
Then draw other models 
 - housetop,  
 - two  means, gravel or not  
 - normal curve 
 
Write equation for two-mean model
 M = K1  if R = 5 or 6 (gravel) 
 M = K2  if R not equal 5 or 6 
 
Let’s review what we did.  We began with verbal model, then moved to graphical model, 
and finally to a formal model.  This illustrates quantitative reasoning. 
 
Both models can be  
compared to data. 
 
 
The two-mean model happens to be the statistical model used in a t-test, which is a test of 

whether two means differ by more than just chance levels. 
 
This format  (Data = Model + Residual) integrates "modeling" with "statistics" 
 
We are going to use models of data to summarize data, as in descriptive statistics.  

Common examples are means, standard deviations, and correlations.  
We are going to use models to quantify uncertainty and draw conclusions from the data.  

This is called inferential statistics. It takes several forms. 
1. Evidentialist.  We infer from the data to a model of the data.  We report likelihood 

ratios as a measure of the strength evidence calculated from our data. 
2. Frequentist.  We use likelihood ratios to infer from the data to a population. 
3. Priorist.  We use a likelihood ratio to infer from a prior to a posterior probability. 
 
What then is a likelihood ratio?  It is a measure of evidence for one model (say a 
regression line) relative to another (regression line with zero slope).  In this course you 
will learn about and use both a measure of evidence (the likelihood ratio) and a measure 
of  uncertainty (the p-value). 
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Reasons for model based approach to statistics. 
 
Statistics are traditionally taught separately from 'models.' 
 Example of statistics:  regression. 
 Example of model:    1/N dN/dt =  r 
 
This course does not present statistics as a collection of tests.  The course teaches you to 
write the statistical model based on a science question. Why this approach? 
 
REASON 1 With the modelling approach we are no longer dependant on the machinery 

of hypothesis testing.  We have a broader range of ways to evaluate uncertainty in the 
analysis of biological data. 

 
REASON 2  Model approach leads to learning of concepts & principles, rather than 

memorizing a collection of techniques. 
 
REASON 3  Statistics and modelling are closely related.  To illustrate: 
 Models underlie the most widely used statistical methods. 
 Statistical analysis is commonly used to develop and defend a model. 
 
REASON 4  A model-based approach has the advantage of  carryover. 
 We use what we know about biological models to improve statistical analysis 
 We use what we know about statistics to evaluate models. 
 
Statistics are traditionally taught as a series of techniques "101 Statistical Tests" 
This is the way we identify birds from a field guide. Or how we identify plants from a 
key.   But it is not a description of how we do science.  
 
Instead, we learn concepts that connect terms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To illustrate, scatter these 8 terms on board 
 sporophyte,  metaphase,  blastula,  morula, 
 gametophyte,  prophase,  telophase,  gastrula 
 
Probably no one can still define these (I can't either) 
But I bet you can still match them by concept   
                                                 cell cycle 

alternation of generations 
early development (embryogenesis) 

 
Which terms pertain to the concept of "Cell cycle" ? 
 (they'll get it right.  draw circle around these terms.) 
Which terms pertain to  "Alternation of generations" ?   
 (students call out terms, draw circle around these) 
Which terms pertain to "embryogenesis" ?  etc. 
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Reasons for modeling approach.   
 
REASON 2.  Learning concepts and principles.   More about this. 
 
Learning to write the model has several advantages 
 Work from general principles of survey and experimental design. 
 Reduction in arbitrary material to learn. 
 Extends analysis beyond the list of named tests. 
 Extends analysis beyond text-book cases, which don’t always fit our data.   
 
But there are disadvantages 
 Principles are abstract, and so are harder to learn. 
 We need specific cases, often several, to grasp a concept. 
 
Statistics are often taught as series of prescriptions, because this is less abstract and all we 
have to do is  follow the recipe. 
 
A few prescriptions are highly useful, serving well in many cases (for example, t-test) 
 
But while prescriptions are readily learned in a classroom setting (follow the recipe), they 
are not going to serve us well outside the classroom.  
 There may not be a textbook case that fits our data. 
 The search for a better recipe can be laborious and confusing.   
 We end up having to learn corrections (e.g. arcsin transform for % data). 
 The corrections may be a waste of time (e.g. arcsin transform). 
 Several prescriptions fit our data, but give different results  

(e.g., ANOVA versus Kruskal Wallis test). 
 Standard prescriptions are more limited than writing the model 

(e.g. Chisquare tests vs logistic regression model). 
 Some widely held beliefs are wrong (e.g. ‘data must be normal’). 

Key assumptions are sometimes missing from the prescription 
(e.g. homogeneity of slopes when using ANCOVA for statistical control). 

 When we focus on learning a series of tests we don’t learn general principles. 
 
Principles and general techniques (e.g. constructing the model, evaluating the residuals) 
will serve us best when it comes to  

designing an experiment,  
designing a survey,  
evaluating statistical conclusions in the published literature. 
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Model based statistics – Course goals and course structure 
 
Learning principles and how to implement them on a computer will serve us better than 
learning prescriptions. Learning prescriptions will not serve us well, beyond the 
classroom. 
 
Methods and principles will be taught together in same course 
 -methods in the lab sections (including use of computer), 
 -principles in lectures. 
 
The goal is to learn to think with quantities, as well as to develop skill in applying 
specific methods. 
 
The course begins with the basics of data collection and explanatory models (Part I): 

the concept of  a well defined, measurable Quantity 
  working with models in symbolic form (practice in Lab 2) 
Part II covers quantitative measures of evidence and uncertainty:   
 Frequency distributions 
 Likelihood ratios 
 Type I and II error 
 Bayes’ rule and confidence intervals 
Part III covers  statistical analysis for a single explanatory variable. 
 Linear regression 
 t-tests 
 One-way ANOVA 
Part IV covers statistical analysis for multiple explanatory variables. 
 Multiple regression 
 Multiway ANOVA 
 ANCOVA 
 Designs that do not fit into these categories. 
 
 


