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Statistical Science 
Chapter 3.3    Descriptive Statistics and Rescaling 
 
 
 
 
 
 
 
 
 
on chalk board 
 
 
 
 
 
 
Recap Chapter 1 
Quantitative reasoning: Example of scallops, which combined stats and models 
Recap Chapter 2 
Quantities: Five part definition 
Measurements made on four types of scale: nominal, ordinal, interval, ratio 
Recap  Chapter 3.  Re-scaling 
Logical rescaling (from one type of unit to another). 
Re-scaling is a common technique in quantitative biology. 
Operations on measured quantities differ from operations on numbers. 
 -the rules differ 
 -physically interpretable, not just abstract mathematical procedures 

 
Wrap-up: 
We can convert a scaled quantity to a ratio with no units by rescaling it to a quantity with 
the same units. This is called normalization. We can renormalize to the maximum value, 
resulting in a ratio between zero and one.  We can renormalize to the minimum value, 
resulting in a scope. Statistical renormalization results from scaling to a statistic such as a 
sum, a mean, a range, or a standard deviation.   
 
 
 
 
 
 

Today: Normalization in science and in statistics. 
 

ReCap.  Quantitative Reasoning(Ch 1) 
  Quantities (Ch2) 
Re-Scaling (Ch3) 
3.1 Logical Re-scaling 
3.2 Operations on Ratio Scale Quantities 
3.3 Descriptive Statistics and Rescaling 
 Normalization – General Definition 
 Normalization to the minimum – Scope 
 Normalization to the sum 
 Normalization to the mean 
 Normalization to measures of dispersion 
3.4 Unit Conversion and Rigid Rescaling 
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Normalization – General Definition 
 

We can reduce a scaled quantity to a ratio with no units by normalizing each value. 
Normalization occurs when we divide a value by a reference value having the same units.  
The generic expression for normalization is 
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The ratio has no units. The magnitude of a scaled quantity thus becomes independent of 
the units of measurement.  In most applications β = 1.  But we can use any value of  β 
when rescaling quantities.  Normalization where β = 1, allows us to substitute one 
measurement unit for another, as in Galileo’s use of spearlengths to measure velocity.  It 
is the basis of classical dimensional analysis. 

A convenient reference quantity Qref is the largest observed or largest possible value, 
resulting in a reduced variable that can range from 0 to 1.  An example is running speed 
measured relative to the maximum for that species.  Yet another useful reference quantity 
is the minimum observed or possible value Qmin, which yields a scaled variable that 
ranges upward from one. An example is metabolic rate as a multiple of the standard 
metabolic rate SMR, which is measured at rest and in the absence of absorptive activity 
by the gut.  Scaling relative to Qmin expresses the quantity Q in steps that are relevant to 
that variable. In physiology the scaled quantity Qmax /Qmin is called a scope.   The 
definition of scope can be extended to any measured quantity 

scope Q Q
Q

( ) max
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≡  

We can use scope to  
  compare the capacity of measurement instruments,  
  compare the information content of graphs,  
  compare variability of physical systems, or biological systems.   
 

In addition to normalizing to a reference value, we can normalize the values of a 
quantity relative to a statistic with the same units such as a sum, such as the mean, the 
range, or the standard deviation. For the sake of clarity, we’ll call this statistical 
normalization, to distinguish it from other forms of normalization. Normalization has 
several meanings, so we’ll be specific about the normalization: normalizing to the mean, 
to the range, etc. 
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Normalization to the minimum --> scope (Schneider 2009 Chapter 11) 
Physical quantities often have a large scope.  

Quantity:   mass of hydrogen atom  H2 
 Scope = mass(H2)/mass(earth) 

 mass(H2) = 1.0079 g·mol−1 · 1 mol·6.02−110−23 atoms · 2 atom· molecule−1 

  = 3.3·10−24 g 
 mass(earth) = 5.5·g·cm−3  · 4π 3−1 (12.756 km/2)3 
  = 5.98·1019 g  =  5.98·107 Tg    (teragrams) 
 Scope = 5.98·3.3−1·1031 = 1.8·1031 

 
Biological quantities often have a smaller scope than physical quantities. 
 Quantity:  respiration rate 
 Scope is of the order of 10 (maximum is ca 10 times the minimum). 

Quantity: body mass       
Scope = 1021 

 = ratio of  mass of Mycoplasma (the smallest organism) to mass of Blue Whale. 
 
Measurement instruments have a scope, defined as the maximum over the minimum 
reading. 

Example: 1 kg / 1 microgram =  109 if we have a scale that will record masses to 
the nearest microgram, up to a maximum of 1 kg. 

 
 Scope of a metre-stick  =  1m / 1cm =  100 (if marked in centimetres) 
 Scope of a metre-stick  =  1m / 1mm  = 1000 (if marked in millimetres) 
 
A survey will also have a scope.  Surveys are carried out by  

 -defining the sample unit,  
 -listing all possible units (the frame),  
 -then either sampling all possible units (complete census) 
 or sampling units at random. 

 
The scope is the ratio of the frame size to the unit size. 

For example a salmon survey might employ 100 km transects along river. 
The unit is the 100 km transect, the frame is length of the river, and the scope is the 

number of possible transects along length of the river. 
Extending the survey to all rivers in Labrador enlarges the scope. The unit is still the 

100 km transect, the frame is now the sum of the length of each river.  The scope 
increases to the number of possible transects along all rivers. 
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Normalization to minimum --> scope 
Experiments also have a scope.   

A physiological experiment carried out on 4 samples from the liver tissue from one 
mouse has a scope equal to the volume of the liver divided by the volume of each 
sample. 

An experiment carried out on 4 tissue samples from each of 20 different mice has a 
greater scope: the ratio of the liver volume of 20 mice, divided by volume of each 
sample.  This increase in volumetric scope tells us something about the generality 
of the result.  The experiment with the greater scope is more convincing because 
carried out over a greater variety of tissue states, due to variation among mice. 

If the experimental unit is a duration, then this is used in determining the scope.   
For example an experiment on mortality of bacterial colonies in an agar plate, 

measured daily over 10 days, has a temporal scope of 10 days / 1 day = 10. 
If the experiment is repeated 10 times, the temporal scope rises to  

10 * 10 days / 1 day = 100. 
This increase in scope again tells us something about the generality of the result, 

which applies at several times, not just at one point in time. 
 

The scope of measured quantities is used in comparing survey designs and evaluating 
the limits on statistical inference from field and laboratory experiments.   

 
See  Chapter 11. The Scope of Quantities    

Chapter 12. The Scope of Research Programs. 
 
Schneider, D.C. 2009.   Quantitative Ecology: Measurement, Models, and Scaling. 
San Diego: Academic Press. 
 
Normalization relative to a statistic.  In statistical analysis, we often renormalize 
relative to a descriptive statistic, such as the sum, the mean, the range, or the standard 
deviation. 
 
Normalization to a sum 
A familiar example of renormalizing is taking a percentage: adding up the parts to 
compute the whole, then taking each part as a ratio relative to the whole. For a percentage 
the reference quantity  Qref  is the sum of all the values of Q and the exponent is α = 1, 
resulting in dimensionless values that can range from 0 to 1.  
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Normalization to a sum 
Of particular interest in statistical analysis is the scaling of counts derived from nominal 
scale scoring of units.   For example Mendel scored 929 pea plants as having either white 
flowers (224) or purple flowers (705).  Thus 24% of the plants had white flowers. 

π =
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The same information is also expressed as an odds ratio.  The odds of a flower being 
white are 0.318 to 1. 
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Normalization to the mean of the quantity Q,  where mean Q
n

Q
n

i( ) = =∑1 1  
1.  Wind speed vel = [ ……..]·m/sec 
measured hourly at St. John's airport on ....(day with rise and fall over 8 hours. 
 
2.  Number of vascular plant species on 7 of the Canary Islands, in the eastern Atlantic.  
Data from K. Lems 1960 Floristic botany of the Canary Islands Sarracenia 5: 1-94. 
 
Nplant =  [ 366 348 763 1079 539 575 391 ] · sp/island 
 
mean(Nplant) = n−1 ΣNplant  
mean(Nplant) = 7−1 ·4061 · species/island = 580 
 
dev(Nplant) = Nplant  − mean(Nplant)  
 
dev(Nplant) = [  −214 −232 +182 +498 −41 −5 −189  ] · sp/island 
 
kdev(Nplant)   = [ Nplant − mean(Nplant) ] / mean(Nplant) 
 
kdev(Nplant) = [−0.36 −0.56 +0.31 +0.89 −0.071 −0.0086 −0.33  ] · sp/island 
 
This particular normalization is often used in the physical sciences, notably meteorology 
and oceanography, where it is called the anomaly.  An example is the annual temperature 
anomaly, the degree to which average temperature in the current year differs from a 
longer term average (warm year, cold year, etc).   
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Normalization to the mean 

Normalization to the mean is central to genetics, population biology, and 
evolutionary biology, including the calculation of selection coefficients.   

An example is incidence of pale-eyed (I = ge) or wild type (I = wild) flies in 8 
progenies of the housefly Musca domestica (Sokal and Rohlf 2012 p 731).  A new 
variable, the frequency of wild type flies fwild is obtained by logical rescaling from 
nominal to ratio scale:   

 fwild = [83  77  110  92  51  48  70  85] · flies.     Σfwild = 616 
 

This is normalized to the mean number of flies per progeny,  
 Nb = [130  120  206  150  82  109  112  151] · flies.   ΣNb = 1060 
 

The normalized value is the proportion of pale eyed flies 
 
 pwild = fwild/Nb = [0.64  0.64  0.53  0.61  0.62  0.44  0.63  0.56] ·wildtype/progeny  
   
 mean(pwild) = Σfwild/ΣNb = 616/1060 = 0.58 wildtype/progeny 
 

Proportions are usually normalized as a ratio, rather than as a difference. 
 
 pwild/mean(pI=wild)  =  [1.10 1.10  0.92  1.06  1.07  0.76  1.08  0.97] 
 

The proportion of wild type flies was highest in progenies 1 and 2, lowest in 6. 
Selection coefficients are calculated from these proportions.   

 
Normalization to the mean – The Coefficient of Variation 

The examples so far have been for each value of a variable. Normalization is also 
applied to measures of variability, resulting in a single ratio.  The most familiar 
example is the coefficient of variation.  

CV
stdev Q
mean Q

≡
( )
( )

 

Taking Q  as the average value of Q he standard deviation is defined as:   
 
                    
 
 

The coefficient of variation is a unitless ratio that permits comparison of the 
variability of two scaled quantities, free of the effects of choice of measurement scale 
or the effects of size.  For example, we can use the CV to compare morphological 
variability in mice and elephants. 

 

( )stdev Q
n

Q Q
n
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Normalization to a range 
The range is defined as the largest minus smallest value, usually in a sample. 

Normalization to the range (or scope) reduces the quantity to the range of 0 to 1.   
 

 
This form of normalization is called ranging (Sneath and Sokal 1973) or minmax 
scaling.  In data science is it called feature scaling, or more ambiguously  “data 
normalization.” 

 
Normalization to the standard deviation 

Normalization to a measure of dispersion, the standard deviation, is common in 
statistical applications. Taking  Q  again as the average value of Q, the standard 
deviation is defined as:  

 
 
 

Returning to the number of plant species on 7 Canary Islands, we have: 
 

dev(Nplant) = [ −214 −232 +182 +498 −41 −5 −189  ] · sp/island  
  dev2(Nplant)  =  [  45857 53890 ..... ] · (sp/island)2  
mean squared deviation 
  msd(Nplant)  =  n−1 Σdev2(Nplant)  =  7−1 419537  =  59934 (sp/island)2  
root mean squared deviation 
  rmsd(Nplant)  =  sqrt(msd) =  sqrt(59934)  =  245 sp/island  
variance 
  var(Nplant)  =  (n−1) −1 Σdev2(Nplant)  =  6−1 419537  =  69923 (sp/island)2  
standard deviation 
  std(Nplant)  = sqrt(var(Nplant))  =  sqrt(69923)  =  264 sp/island  
standard deviates 
  nscore(Nplant)  =  (Nplant - mean(Nplant) ) / std(Nplant) or nscores  
  nscore(Nplant)  =  [  −214/264  −232/264  ... ]  =  [−0.81  −0.88 ... ]   

Q
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This form of normalization is called standardization.  The results are called normal 
scores. These are dimensionless numbers because all of the terms in the formula have the 
same units, that of Q.  Normal scores permit comparison of quantities that differ in 
magnitude and variability.  Legendre and Legendre (1998) discuss applications and 
potential problems of this and other statistical reductions to dimensionless ratios. 
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