
 1 

Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty. 
Chapter 7.5    Confidence Limits 
 
 
 
 
 
 
th 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops, which combined  
models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap (Ch5) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
ReCap (Ch 6) 
Frequency distributions are a key concept in statistics. 
They are used to quantify the strength of evidence (likelihood ratios), 
They are used to quantify uncertainty (p-values_ 
Empirical distributions are constructed from data. 
Theoretical distributions are models of data. 
ReCap (Ch 7) 
Inferential statistics are a logical procedure for making decisions when there is 
uncertainty due to variable outcomes.   
Hypothesis testing is concerned with making a decision about an unknown population 
parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 

 
Wrap-up 
We used cumulative distributions to compute confidence limits, a measure of the 
reliability of an estimate. 

Today: Cumulative distributions to compute confidence limits on estimates 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6) 
7.0 Inferential Statistics 
7.1 The Logic of Hypothesis Testing 
7.2 Hypothesis Testing with an Empirical 
  Distribution 
7.3 Hypothesis Testing with Cumulative 
  Distribution Functions 
7.4 Parameter Estimates 
7.5 Confidence Limits 

The truth is out there.   
We’re going to surround it. 
 
Anonymous student. 2011. 
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Confidence Intervals and Conifidence Limits 
We will use confidence limits to evaluate the uncertainty on an estimate made from data. 
 
Definition. There are several definitions of a confidence interval.  A Confidence Interval 
consists of two values that bracket the true value of a statistic, at some specified level of 
confidence (say, 95%).  The idea of using an interval to quantify uncertainty is due to 
Thomas Bayes (1702 – 1761) a nonconformist minister and mathematician.  Bayes 
proposed and then solved a special case of the problem in inverse probability: inferring a 
previous even from prior events.  

PROBLEM 
Given the number of times in which an unknown event has happened and 
failed: Required the chance that the probability of its happening in a single 
trial lies somewhere between any two degrees of probability that can be 
named. 

 
To solve the problem Bayes described a 
”square table made level” on which a ball W is 
first thrown, then a ball O is thrown repeatedly. 
The proportion of times that the second ball 
passes to one side of ball W is then calculated. 
A binomial distribution is used to calculate 
Bayes’ Rule 1, that “my guess that the 
probability of its happening in a single trial 
lies somewhere between any two degrees of 
probability…. is right.”  Bayes constructed a  
diagram to display a geometric proof for the  
cumulative distribution between any two 
degrees of probability.   

 Bayes’ rule for calculating the interval appears to be what is now called a 
credibility limit (fixed limits for a parameter with a random component). 
However, Bayes’ rule when applied to a fixed object, such as the location of a 
star, the target of a measurement, or a ball at rest on a table can also be 
interpreted as a confidence limit (fixed parameter between random limits).  
 Bayes’ probability interval is not the Neyman type probability interval in use 
today.  The Neyman 95% CI is the interval that will contain the true value on 
95% of occasions if a study were repeated many times using samples from the 
same population. Binomial confidence limits were developed in the early 20th 
century (Wilson 1927, Clopper and Pearson 1934). This was then generalized to 
confidence limits for any distribution (Neyman 1937). 
 Having given Thomas Bayes due credit for the idea of probability interval, 
we move on to an example of the Neyman confidence interval, which is the 
interval that is presented in textbooks and predominates in published research.   
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Example -- Brook trout lengths 
 
We measure a sample of 16 0-group trout from Cat Arm lake on the Great Northern 

Peninsula, in 1982, prior to flooding to create a reservoir. 
0-group are fish less than 1 year old.  First year fish were of interest in 1982 because one 
potential impact of flooding of Cat Arm lake was reduction in numbers or size of fish 
recruiting to the population.  If there was an effect on fish size or numbers, then 
Newfoundland Hydro was committed to build a hatchery to mitigate the effects of 
flooding on this and other fish in the lake.  The hatchery would be built by Newfoundland 
Hydro, at the expense of those who pay Hydro for electricity.  Size was measured prior to 
flooding to establish a baseline for comparison to first year fish after flooding.  
 
Quantity is fork length  Y  =  mm 
 
Sample size was 16 
Total population in the lake was ca 700 trout, estimated from a mark-recapture study. 
Sampling was haphazard. Randomized sampling of the population was not possible. 
The sampling fraction was 16/700, or approximately 2% of a finite population. 
 
The sample mean was mean(Y) = 53.8 mm 
This is an estimate of the true mean E(Y), which is unknown. 
 
How reliable is our estimate of the mean?  We’d like to know whether our estimate is 
close to the true value, the average length in the population of approximately 700 fish.  
We can’t know the true mean, but we can make a statement about the reliability of our 
estimate, relative to the true value of the mean. 
 
To make a statement about the reliability of our estimate, we compute a range that    
includes the true value a high percentage of the time.  This is called the confidence            
limit.  Here is a generic recipe for calculating confidence limit on any estimate. 
 
Table 7.5a Generic recipe for calculating a confidence limit. 
_______________________________________________ 
1. State population; state the statistic of interest. 
2. Calculate an estimate of the statistic from data 
3. Determine the distribution of the estimate. 
4. State tolerance for Type I error. 
5. Write a probability statement about the estimate or statistic. 
6. Plug values into the statement to obtain confidence limits. 
7. Make a statement of degree of certainty about the confidence limit.  
 This statement is not about the probability that the limit contains the true value. 
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Confidence Limits – Computational Flow 
 
To compute the confidence limit, we fix some probability that we can live with, then 
make a probability statement about a line that includes the true value at a pre-stated level 
of confidence. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To compute a confidence limit, we will: 
 obtain a statistic from data, 
 obtain the distribution of this statistic 
  (this is not the same as the distribution of the data), 
 use the distribution of the statistic to compute confidence limits. 
 
Graph shows this.  Start with probability range 
to compute range of statistic. 
 
 
 
 
 
 

As example, draw Chisquare distribution, 
(labelled df = 4) 
The is the distribution for the variance.  
(Draw pdf) 
Then draw the cdf above or below the pdf. 
Here are the  Minitab computations for 
text example p 155 (Sokal and Rohlf 1995) 
 
MTB > invcdf 0.025; 
SUBC> chisquare 4. 
   0.025   0.484 
MTB > invcdf 0.975; 
SUBC> chisquare 4. 
 0.975   11.1433 
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Confidence Limits –Key to choice of distribution for computing limit. 
 
Table 7.2. Key for choosing the frequency distribution of a statistic. 

 
 
Empirical distributions are generated by taking all permutations, by sampling 
permutations, or by subsampling (bootstrap methods). 
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Confidence Limits from Generic Recipe -- Brook trout fork lengths  
 

                     1.       The population is all brook trout less than 1 year of age in Cat Arm Lake 
in 1982 

 The statistic of interest is the population mean. 
 
2. The mean for a sample of 16 fish was 
  mean(Y) = 53.8 mm 
 

       3.       The distribution of an estimate such as a mean will not be exactly the same 
as the distribution of data so we use a key (Table 7.2, above). 

 
 The statistic is the population mean,  

  the data cluster around a central value, 
  and the sample size is small (16),  
  so the appropriate distribution is the t-distribution. 
 
4. The tolerance of Type I error will be set at 10%. 
 This increases the tolerance for error, compared to the traditional 5% level.  
 This increase reduces the risk of Type II error, failing to detect a real difference.  
 

             5.       Now that we have a distribution, and a stated tolerance for error, we write a 
probability statement. 

 
 First in verbal form.  "The line from L1 to L2 includes the true mean fork 

length µY of CatArm brook trout with a probability of 90%" 
 
 The probability statement is about 1 − α 
 It is not about the probability around the observed mean. 
 
 Next in graphical form  (refer back to figure, limits on y axis projected to x-axis) 

A cumulative frequency distribution is used to go from probability to 
outcome.  This is the opposite direction from that used in hypothesis 
testing, where the frequency distribution is used to go from outcome to 
probability. 

 
 Now, the same thing in symbolic form. 
 
  { }P L LY1 2 1≤ ≤ = −µ α  
  ( ) ( ){ }P Y s t n Y s t nY Y Y− ⋅ − ≤ ≤ + ⋅ − = −α µ α α/ , / ,2 1 2 1 1  
 

We’ll examine each of these components in detail.   
 

For now, we note  ( )t nα / ,2 1−  is the absolute value of the t statistic from the cdf. 
It is negative at α/2 = 5%.  It is positive at 1 − α/2 = 95%. 

 
 We subtract this quantity from  to obtain the lower limit L1. 
 We add it to  to obtain the upper limit L2. 
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Confidence limits -- Brook trout fork lengths  (continued) 
 
5. Write probability statement (continued) 
 
  ( ) ( ){ }P Y s t n Y s t nY Y Y− ⋅ − ≤ ≤ + ⋅ − = −α µ α α/ , / ,2 1 2 1 1  
 
 We use the sample mean Y  to estimate of the true mean µY 
 
 For the t-statistic we use the t-distribution, which is symmetrical around zero.   
 We use the t-distribution with df = n−1 
 We assign half of our tolerance for uncertainty (α/2) to each tail (5% to each tail) 
 We use the inverse cumulative distribution function cdf  to obtain the lower tail 
  probability (α/2) and the upper tail probability (1−α/2) values for  
  the t-distribution. 

     sY
is the standard error of the mean. 

    The standard error is estimated from the sample standard deviation of the data sY 
 
 

 
6. Plug values into probability statement 
 

  =   53.8 mm   sY  =  5.8  mm α = 10% α/2 = 5% t(0.05,15) = −1.753    

 
  
      P{ 53.8 − 1.753*(5.8 / sqrt(16)) < µy  < 53.8 + 1.753*(5.8 / sqrt(16)) } = 90% 
 
  P{ 53.8  − 2.54 < µy < 53.8 + 2.54}  =  90% 
  
  P{ 51.26 < µy < 56.34}  =  90%  
 
7. The limits 51.26 mm to 56.3 mm enclose the true population mean 90% of the time. 
 The statement is about limits that enclose the true value of the mean. 
 The statement is not about the sample mean . 
 
  

MTB> invcdf 0.05; 
 SUBC> t 15. 
  0.05    −1.753 
 
 MTB> invcdf 0.95; 
 SUBC> t 15. 
  0.95    +1.753 

Most packages calculate the 
upper and lower tails. Tables 
for t distribution were usually 
two-tailed, showing both tails 
for positive values only. 

s
s
n

Y
nY

Y= =
var( )
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Comments on confidence limits 
 
How do we narrow L2 − L1 ? 
 increase  α This increase tolerance of Type I error 
 increase  n This reduces the standard error of the estimate 
 decrease σ  This accomplished by eliminating sources of error or unexplained variance. 
 
Confidence limits use the inverse probability distribution. 
 
     Hypothesis testing:  go from outcome to probability 
 
 
     Confidence limits: go from probability to outcome 
 
 
Confidence limits are particularly useful in excluding hypotheses other than just Ho  
A confidence limit is not of much value if the sample is not representative. 
 
We use the t distribution for the t-statistic, the F-distribution for F-ratios, and χ2 
distribution for statistics known be distributed as chi-square.  For other statistics, we use 
an empirical distribution generated  by randomization (cf Table 7.2).  Or we can use 
bootstrap methods ( Lab 11). 
 
Extension  
The fish measurements at Cat Arm Lake and subsequent reservoir become a monitoring 
program to evaluate the hypothesized loss of spawning habitat due to flooding of a lake 
into a reservoir.  Once a distribution was established during the early stage of monitoring, 
credible intervals would have been a logical way to update the estimates of uncertainty on 
size of fish in the reservoir.    

MTB> cdf 1.753; 
SUBC> t 15. 
 1.753 0.95 

MTB> invcdf 0.95; 
SUBC> t 15. 
 0.95 1.753 
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Binomial Confidence Limits -- partridge berry example 
 
 
 
 
 
 
Partridgeberries, Vaccinium vitis-idaea L, grow on low plants in treeless areas in 
Newfoundland. Lingonberry fruitworm Grapholita libertine Heinrich is a tortricid moth 
whose larvae feed within the berry, causing it to go mushy when berries ripen. To 
estimate worm infestation rate a sample of 250 partridge berries were removed from a 
bucket of berries picked in September 1985 from the barrens above Memorial 
University’s Logy Bay Marine lab. 
One worm was found.  How reliable is this estimate of the true rate of infestation ?   
(i.e., what are the confidence limits for this estimate?) 
 
1. Population:  all partridge berries above the Logy Bay lab in Sept 1989.  

This is a finite population that can be estimated by picking every berry in randomly 
placed plots within a larger area.  

 The statistic is the infection rate. 
 
2. Estimate of infection rate is  x/n = p  =  1/250  =  0.004  (4 per thousand) 
 
3. Frequency distribution is binomial with n = 250 trials, π = 0.004. 
 
4. Tolerance of Type I error:  α =  10%. 
 
5. Frequency is one infection, for which Minitab notation is K = 1. 

P{ L1  <  K  <  L2 } = 1 − α 
 
6. Plug in α/2,  
 lower limit 
 
 
 There is not enough information to set a lower 90% limit. A larger sample is needed. 
 
6.  Plug in 1−α/2, 
 upper limit 
 
 
7. P{ K >  2 } = 1− 0.9201 = 0.08 

P{ K >  3 } = 1− 0.9813 = 0.0287 
The upper 90% limit is closer to 3 than 2. 

 
 

  

This example illustrates asymmetrical limits 
for an example where the null hypothesis is of 
no interest.   

Ask students for examples from their work, 
where showing reliability (confidence limits) 
would be useful. 

MTB> invcdf 0.05; 
SUBC> binomial n=250  p=0.004. 
 K  P(X LESS OR = K) K   P(X LESS OR = K) 
 0  0.000  0   0.3671 

MTB> invcdf 0.95; 
SUBC> Binomial 250 0.004. 
 K  P(X LESS OR = K) K   P(X LESS OR = K) 
 2  0.9201 3    0.9813 



 10 

References. 
 
Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. By 
the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John 
Canton, A. M. F. R. S.  Philosophical Transactions of the Royal Society 53: 370–
418. 
 
Clopper, CJ,  ES Pearson. 1934. The use of confidence or fiducial limits illustrated 
in the case of the binomial. Biometrika 26: 404–413, 
https://doi.org/10.1093/biomet/26.4.404 
 
Neyman, J. 1937. "Outline of a theory of statistical estimation based on the 
classical theory of probability". Philosophical Transactions of the Royal Society A. 
236 (767): 333–380. 
 
Wilson E.B. 1927. Probable inference, the law of succession, and statistical 
inference. Journal of the American Statistical Association 22:158, 209-212, 
https://doi.org/10.1080/01621459.1927.10502953 

 


