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Statistical Science.    
Part III.  The General Linear Model. 
Chapter 10.2   Two Sample t-test 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the value of an unknown parameter. 
ReCap (Ch 9)  The General Linear Model is more flexible and useful than a collection of 
named tests. 
Regression is a special case of the GLM.  We have seen an examples with the 
explanatory variable X fixed, with the explanatory measured with error.   

 
Wrap-up 
ANOVA is a special case of the general linear model..   
The explanatory variable consists of categories, which are on a nominal scale. 
A t-test contrasts two means. It is a special case of one-way (single factor) ANOVA.  
 
 
 
 
 
 
 
 
 

Today: 
Two-sample t-test as a special case of the GLM 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9) 
10.1  Single Sample t-test 
10.2  Two Sample t-test 
10.3  One way ANOVA, Fixed Effects 
10.4 One way ANOVA, Random Effects 

Ch10.xls 
Sleep data from Cushny and Peebles 
Daphnia ages from Sokal and Rohlf 
(2012) Table 9.2 
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GLM. Unpaired t-test  ANOVA with two categories. 
Example.  Sleep data. 
              

The example will be hours of extra sleep, in two drugs, 
hyoscyamine (DrugA) and hyoscine-L (DrugB). 

  Data from  
Cushny AR, Peebles AR (1905). The action of optical isomers. 
II. Hyoscines. J Physiology 32:501-510. 

 
Drugs A and B were administered to 10 patients in a mental 
hospital. Quoting from the publication “As a general rule a tablet 
was given on each alternate evening, and the duration of sleep 
and other features noted and compared with those of the 
intervening control night on which no hypnotic was given.” 

   
 
1. Construct model 

Verbal model:  Extra time slept depends on drug.  
Graphical model: Comparison of two means. 
  
The verbal and graphical models help us  
distinguish response from explanatory variables. 
 
The quantity of interest, hours of extra sleep, depends on 
the explanatory variable, Drug A or B.  
Response variable: Hours of extra sleep T  
 Also called the dependent variable.   

It has units of hours, it is on a nominal scale. 
Explanatory variable: Drug (= A or B)   

Drug is a categorical variable.  It is on a nominal scale 
 
List variables: role (response/explanatory), name, symbol, units, and type of scale. 
 

     Variable name  Symbol Units  Scale 
 Response variable       Hours of extra sleep     T  hours  ratio 
 Explanatory variables     Drug   Drug            nominal 

 
State the verbal model using names of quantities and then using symbols 

 "Hours of extra sleep depend on drug type" 
 Hours of extra sleep T = f(Drug type). 
 
  

0.7   1.9 
-1.6   0.8 
-0.2   1.1 
-1.2   0.1 
-0.1  -0.1 
 3.4   4.4 
 3.7   5.5 
 0.8   1.6 
 0.0   4.6 
 2.0   3.4 
 
DrugA DrugB 
Cushny.dat 
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1. Construct model 
Formal Model    Now write the formal model, which is what the statistical package will 

use to carry out the analysis.  Here it is in generic notation, then in an equivalent 
notation specific to the data. 

 T = o +     x ꞏ x   +    generic notation 
  𝛽௢  is the grand mean 
  x is the difference between 𝛽௢ and the mean of  Drug A and of Drug B 

 
  T = o + Drug ꞏ Drug  +       equivalent notation 
   𝛽௢  is the intercept, the mean for the first drug (Drug A) 
  Drug is the contrast (difference) between Drug A and B 
  0 + Drug = mean of Drug B 

 
2.  Execute analysis. 

Data are often displayed by category, as above.  
We reorganize the data to model format   - - > 

 1 column with response variable, extra sleep time   T.   
 1 column with explanatory variable,   Drug = A or B 

 
Use the formal model to code the analysis in a statistical package. 

         T = o + Drug ꞏ Drug  +  ϵ 
 
 
 

 
If you are using a graphics interface statistical package to run the 
analysis, be sure to look at the code produced, so that you understand 
how the model you wrote translates into a model statement in your 
package. 

 
Run the stat package to obtain fitted (expected) values and residuals from 
model parameters.    

Fitted values Fits  =  E[T] =   ̂  o  + ̂ Drug ꞏ Drug  
Residuals: Res = T – Fits 

 
 Here are the parameter estimates 

 
Residual and fitted values are calculated from the parameter estimates. 
 
    
 
 
 
 

  T  Drug 
0.7   A 
-1.6   A 
-0.2   A 
-1.2   A 
-0.1  A 
 3.4   A 
 3.7   A 
 0.8   A 
 0.0   A 
 2.0   A 
 1.9   B 
 0.8   B 
 1.1   B 
 0.1   B 
 -0.1   B 
 4.4   B 
 5.5   B 
 1.6   B 
 4.6   B 
 3.4   B 

MTB> ANOVA ‘T’ = ‘Drug’ 
MTB> GLM ‘T’ = ‘Drug’ 

MTB > describe ‘hrs’; by ‘drug’ 
              drug        N     MEAN   MEDIAN   TRMEAN    STDEV   SEMEAN 
 hrs             1       10    0.750    0.350    0.675    1.789    0.566 
                 2       10    2.330    1.750    2.237    2.002    0.633 

̂ 0 = 0.75 
̂ Drug =  1.58 
̂ 0 +  ̂ Drug =  2.33 
 

𝑇തA = 0.75 
𝑇തB = 2.33 
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2. Execute analysis. 

GLM routines produce residuals and fits as output. 
 
Here is the model statement in R with code to produce graphical output. 

 
 
Here is a partial print-out of the data equations 
showing the residuals. Residuals here are 
offset by 1 for graphical evaluation of 
independence of the residuals.   
 
3a. Evaluate the structural model. 

No slopes (straight lines) used, so no 
straight line assumption to be checked. 

 
3b. Evaluate the probability model (Normal distribution in this case). 

This is especially important when sample size n is small (less than 30 or so) 
Plot residuals vs fits. 

 
 

 
 
 
 
 
 
 
 
 

 
First assumption Homogeneity 

The residuals (one stack for each drug) 
show similarly vertical dispersion 
around zero. 
 

Second assumption:   
Are the errors normally distributed ?  

    The residuals here are definitely not normal. 

  GLM:     T =   o  + Drug ꞏ Drug   +  
MTB > GLM ‘Time’ =       ‘Drug’; 
SUBC> fits c3; 
SUBC> res c4. 
MTB > plot c4*c3 

  GLM:  T =       o  +  Drug x Drug    +    
> Sleepmodel <- lm(T ~ Drug, data=Cushny) 
> plot(Sleepmodel) 

 MTB > print 'T' ‘Drug’  'fits' 'res' 
  
  ROW  T   Drug  fits  res  lag1(res) 
  
    1  0.7   A   0.75  -0.05 
    2 -1.6   A   0.75  -2.35  -0.05 
    9  0.0   A   0.75  -0.75   0.05 
   10  2.0   A   0.75   1.25  -0.75 
 
   11  1.9   B   2.33  -0.43   1.25 
   19  4.6   B   2.33   2.27  -0.73 
   20  3.4   B   2.33   1.07   2.27 

  res    -                     * 
         -    2 
         -                     * 
      2.0+                     * 
         - 
         -    *                * 
         - 
         - 
      0.0+    2 
         -                     * 
         -    3                * 
         -                     * 
         -                     * 
     -2.0+    * 
         -    *                2 
         - 
         - 
           --------+----+----+---fits 
                0.90      1.80   2.30 
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3b Evaluate the probability model. 

Third assumption.  Independent errors? 
We do not know the order in which 
observations were made, and so have 
little basis for checking this assumption.  
If we assume the observations were 
made in the order presented in the 
publication, we can check the 
assumption by arranging the residuals in 
that order and then plotting residuals 
against their adjacent value.  To do this we plot the lagged residuals against the 
residuals. 
There are no upward or downward trends, so we judge the residuals to be 
independent of each other at lag 1, in the order presented in the publication. 

 
Fourth assumption.  

Do the residuals sum to zero?  This assumption is usually met because packages use 
least squares or maximum likelihood to produce unbiased estimate that sum to zero. 

 
Conclusion: 

Residuals are homogeneous and independent, but deviate substantially from normal. 
The data used by Gossett (1908) to introduce the t-test did not meet the normality 
assumption for this test. 
Because the residuals depart noticeably from normal we will compare Gossett’s 
results to the results of a randomization test. 

 
4. Partition df and SS according to model. 

dftotal = n-1 dfDrug = 2 categories – 1 dfresidual = dftotal - dfDrug 
SStotal =  var(T)  ꞏ dftotal = 4.072 ꞏ 19  =   77.37 

SSresidual = ∑൫𝑇 െ 𝑇஽௥௨௚஺തതതതതതതതത൯
ଶ
൅ ∑൫𝑇 െ 𝑇஽௥௨௚஻തതതതതതതതത൯

ଶ
 

SSDrug = SStotal - SSresidual = 12.48  This is the improvement in fit. 
 

 
4. How good is the evidence?   

Calculate likelihood ratio for the overall (omnibus) model. 
 LR = (1-R2)(-n/2) R2 = 12.48/77.37 1-R2 = 64.89/77.37 

LR = (64.89/77.37)-20/2 = 5.8 

 LR < 20   There is insufficient evidence of a difference between the two means. 
Note that the measure of evidence depends on the normal error assumption, which 
was not well supported by graphic evaluation. 

 

  GLM: T  o  =    Drug Drug   +    
Source: Total =   Drug   residual 
 df  20  1 =     1  + 18 
 SS    77.37 =   12.48  + 64.89 
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 4.  Decide on mode of inference.   
The drug is being considered for use with people. So Type I error (risk of false 
positive) is relevant to reporting the experimental results.  We use a frequentist 
approach to make a decision relevant to Type I error.   

 
5. State sample and population for frequentist inference. 

The population in this case: an infinitely large number of repeats of the same 
experiment with the same drug.  The term Drug in the model is the long run difference 
between the two means. We could estimate this parameter for the population by 
running the experiment repeatedly, then taking the average value of the differences 
between the two groups.  The sample is considered representative of the population  of 
repeats conducted in the same way. 

 
6. For frequentist inference, state HA / Ho pair,  test statistic, its distribution, and 
tolerance of Type I error. 
 There is one term in the model.  Is this term significant ? (not due to chance). 
 
  The research hypothesis is that the drugs differ in effect. HA: µA   µB 
  The null hypothesis is the drugs do not differ in effect.  Ho: µA =  µB 
 
 Here is an equivalent formulation. 
 
  The research hypothesis is that the drugs differ in effect. HA: Drug  0 
  The null hypothesis is the drugs do not differ in effect.  Ho: Drug = 0 
 
 The symbol Drug has a single value, the difference between the two means. 
 The hypotheses listed above are equivalent to the following pair of hypotheses 
 If the means differ, then var(TA  TB) >0   HA: var(TA  TB) >0 
 If the means are the same,  then var(TA  TB) =0  Ho: var(TA  TB) =0 
 

State test statistic F ratio or t- statistic.  Note: t2 = F. 
Distribution of test statistic F distribution 
Tolerance for Type I error α = 5% 

 
 
 
  

The tolerance for Type I error is called α, which is conventionally set at 5%. 
This is a compromise between Type I and II error. One can set this at 1% or at 
10%, depending on whether one is worried about Type I or II error.  Setting α at 
a low value increases Type II error, the chance of rejecting a true effect. 
If many tests are to be made, it is advisable to set tolerance for Type I error at 
α/n where n = number of tests.  This is called a Bonferroni criterion.  It takes 
into account the fact that the Type I error for multiple tests is not the same as for 
a single test.  With  = 5% and 20 tests, you expect one "significant" result even 
when there is no real effect. 
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7. ANOVA - Move df and SS to ANOVA table. 
 

 
MS stands for the mean squared deviation.  
MS  =  SS / df 

 MSmodel  =  MSDrug  = 12.482 
 MSres   =  MSerror  = 3.605  
 MStot   =  Var(response)  =  Var(T) 
 MStot does not appear in the MS column, because MSmodel + MSres    MStot 
 
7. ANOVA - Compute test statistic F  =  (MSDrug)/(MSres)  =  (SSDrug)/(SStotal - SSDrug) 

 
 The F-ratio can be thought of as the signal to noise ratio. 
 How strong is the signal, relative to the noise (error) ? 
 
 
 
 
 
 
 
 
 
 
 
The completed table represents a sequence of computations from left to right.  It results in 
an F-ratio, which will be small if the explained variance is small, large if the MSDrug is 
large 
  

 Source df SS MS F ----> p 
   Drug  1   12.48 
   Res     18   64.89 
   Total  19   77.37 

Calculations move from left to right,  
  MS from SS and df in ANOVA table 
  F from MS 
  p from F distribution 

 Source df SS MS F ----> p 
   Drug  1  12.48 12.482 3.46 
   Res     18   64.89  3.605 
   Total 19  77.37  

F is the ratio of the explained variance (due to the entire model,  
or due to a factor in the model) to the unexplained variance. 
 E.g.,  F  =  MSmodel / MSres 
This can be calculated by hand, if necessary, using MS or SS from computer package. 
Forming the correct F-ratio can require considerable skill and experience,  
especially with complex experimental designs. 
Computer packages sometimes produce incorrect F-ratios.  It is a good idea to check 
with a statistician, if in doubt. 
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7. ANOVA   Table source, df, SS, MS, F-ratio, and p-value. 
Here are the ANOVA calculations from a spreadsheet. 

Time Drug Fits Residuals   
0.7 0 0.75 -0.05   

-1.6 0 0.75 -2.35   
-0.2 0 0.75 -0.95   
-1.2 0 0.75 -1.95   
-0.1 0 0.75 -0.85   
3.4 0 0.75 2.65   
3.7 0 0.75 2.95   
0.8 0 0.75 0.05   

0 0 0.75 -0.75   
2 0 0.75 1.25   

1.9 1 2.33 -0.43   
0.8 1 2.33 -1.53   
1.1 1 2.33 -1.23   
0.1 1 2.33 -2.23   

-0.1 1 2.33 -2.43   
4.4 1 2.33 2.07   
5.5 1 2.33 3.17   
1.6 1 2.33 -0.73   
4.6 1 2.33 2.27   
3.4 1 2.33 1.07   

      
4.072  0.657 3.415 variance  

      
77.368 = 12.482 64.886 SS= 19*variance 

      
19.000  1.000 18.000 df  

      
  12.482 3.605 MS  

SStot = Var(T)* dftot 
SSfits = Var(fits) * dftot 
SSres =  Var(res) * dftot 
The same computations can be carried out in any package 
 
7. Calculate p-value for terms in the model. 

  
    

 
 
 

p = 1 – 0.921  = 0.079 
 

 
  

Redraw picture.   
Show arrow from F in table to F in graph 

MTB > cdf 3.46; 
SUBC> f 1 18. 
 0.921   3.46    

 Source df SS MS F ----> p 
   Drug  1  12.48 12.482 3.46  0.079 
   Res        18  77.37  3.06     
   Total  19  64.89  
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8.  Recompute p-value if necessary. 
 When assumptions not met, recompute if: n small (Yes, n = 20) 
        p near    (Yes, p =0.079) 
Because p-value is near . the decision might change if the p-value recomputed by 
randomization.   
 
Colquhoun (1971) carried out a randomization test, using 
   12000 of the 184,756 possible permutations of the data into 2 groups. 
The p-value was p = 0.0813   (976/12000) 
This is close to p-value from the t-distribution, and it leaves the decision unchanged. 

The p-value changed by a factor of 0.0813 / 0.079 = 1.03 (hardly at all) 
Ehe substantial violation of normal error assumption had little effect on the estimate of 
Type I error (the p-value) in this case.  This is because the distribution was symmetrical 
around the mean, despite the deviation in shape. 
 
Note: It is not feasible to construct frequency distribution from all permutations. Instead, 
we sample from the list of all permutations by sampling at random from the data, 
compute the F-ratio repeatedly, and construct the frequency distribution of the F-ratio 
when the null hypothesis is true. 
 
Computer packages produce ANOVA tables with F-ratios and p-values.  However, it is 
important to learn how one quantity is computed from another in this table, in order to 
understand the table.  It is also important to write the model out, before executing the 
analysis.  Writing the model, and the list of explanatory variables, then calculating the 
degrees of freedom, is useful in making sure the computer executed the analysis you had 
in mind, rather than something else. 
 
9. Declare and report decision about model terms (compare p to α).  
 I.e. Compare the observed statistic to population of such statistics. 
 0.0813 = p  >    =  0.05     So we cannot reject  Ho: Var(Drug) = 0    
   Equivalently, we cannot reject Ho: Drug = 0   
 Report decision and conclusion:   
  Decision: We cannot reject the null. 
  Conclusion: There is no statistically significant difference in extra time slept. 
     F1,18 = 3.46  p = 0.081 (randomized) 
 
When we cannot reject the null hypothesis, we then consider Type II error, that of a null 
hypothesis that is not true.  
 
We ask: What difference could have been detected, given the variance and the sample 
size?  To answer this, we take the observed difference between the means (T = 2.33 –
0.75 = 1.58 hours), then increase this difference until the p-value becomes significant.   
We start with guess: we  increase difference by adding 0.5 hours to each value in the 
group with the larger mean.  This increases the mean to 2.83 hours.  It increases the 
difference to T = 2.08 hours.  Then we run the GLM routine to obtain the p-value. 
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9. Report decision about model terms (continued) 
We run the GLM routine repeatedly until we find the difference that results in p = 0.05. 
T = 2.33 – 0.75 = 1.58  F = 3.46 p = 0.079 p-value from F-distribution 
T = 2.83 – 0.75 = 2.08  F = 6.00 p = 0.025 too high, try 0.2 increase 
T = 2.53 – 0.75 = 1.78  F = 4.39 p = 0.05 
 
The minimum detectable difference was 1.78 hours, which is higher than the observed 
difference by 1.78/1.58 = 1.127.  With this sampling effort and variance we could have 
detected a difference of 1.78 hours.  A true difference of 1.77 hours of extra sleep would 
go undetected by this experiment.  A better experiment is needed, one that has a chance 
of detecting a smaller difference.  One way to improve the experiment is to increase the 
number of trials, which will reduce the error variance.   
 
If we are planning another experiment it is informative to compute the sample size 
needed to detect a difference, given the variance and contrast between means.  To do this 
we increase sample size until the F-ratio becomes significant at 5%.   Because  p  is 
already close to  we start with a small increase of 10, from n = 20 to n = 30. 
 
Try a slightly smaller increase, of 8 (4 per group), from n = 20 to n = 28 
 
Assuming the same variance and same difference in means, a sample size of 15 per group 
(n = 30) was needed to detect the observed difference.   This is a feasible increase. 
These calculations are readily done in a spreadsheet that recalculates from a change in the 
total df. 

 
10. Report and interpret parameters of biological interest. 
The estimated effect size was substantial:  2.33 – 0.75 hours = 1.58 hours.   
However, the research (alternative) model was only 5.8 time more likely than the null. 
There was insufficient evidence for the research model: LR = 5.8 < 20 
The certainty was low:       p = 0.08 > 0.05. 
To illustrate the t-test, Gossett used an example where the magnitude of the effect size, 
by itself, would lead to a conclusion of a substantial difference between the two drugs. 
The effect size was large  but the variability did not allow us to reject the null hypothesis 
at a conventional 5% Type I error rate with an unpaired design.  With this sampling effort 
and variability, we could have detected a difference of 1.78 hours in time of sleep, which 
is only 13% higher-- 1.78/1.58 = 1.13.   An effect smaller than 1.78 hours would go 
undetected with this sampling effort and variability.    
If individual scores on the two drugs are correlated, then use a paired design. This will 
reduce the residual MS, despite the reduction in degrees of freedom from 18 to 8. 
  

 Source df SS MS F ----> p 
   Drug  1  12.48 12.482 4.19  0.051 
   Res        26  77.37  2.976 
   Total  27  64.89  
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GLM Paired t-test 
 
Does running the previous analysis as a paired t-test (Ch10.1) result 
in a better analysis?  If the hours of extra sleep, relative to control 
(no drug) are correlated across individuals, then the paired t-test is 
potentially more statistically powerful.  That is, it has greater power 
to detect a difference. 
When we run a correlation of the hours of extra sleep for the two 
drugs, relative to control, the correlation is strong.  The explained 
variance is substantial, greater than 50%.   

 
 
 
 
 
There is good evidence (LR = 150) for correlated responses to the 
two drugs. 

 
Using Ch10.1 as a template, run an analysis of the data for Drug A vs Drug B as a paired 
comparison. 
 
Here is the Normal error probability plot for the 10 residuals from a paired comparison.   
 
 

 
 
 
 
 
 
  

0.7   1.9 
-1.6   0.8 
-0.2   1.1 
-1.2   0.1 
-0.1  -0.1 
 3.4   4.4 
 3.7   5.5 
 0.8   1.6 
 0.0   4.6 
 2.0   3.4 
 
DrugA    DrugB 
Cushny.dat 

Correlation 0.795 
R^2 0.632 
1-R^2 0.368 
n 10 
LR 149 
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Example.  Daphnia ages 
Data from  Box 9.5 p 220  Sokal and Rohlf 1995 
Does time to maturity differ in two genetic crosses in the water 
flea Daphnia ? 
 
1. Construct model 
 Verbal model: age depends on strain. 
 
Graphical model.  
      Draw means at 7.56 (Strain 1) and at 7.51 (strain 2) 
 
Response variable 
 A = age (in days) at beginning of reproduction in 
Daphnia longispina in two genetic crosses I and II (ratio type of scale) 
Explanatory variable. 
 St = I or II   (nominal scale) 
 n = 14 observations, 7 in each of groups I and II 
 
Formal Model  A = o + St ꞏ  St +  
 o is the intercept (mean of reference group, Strain I).  
 St is the contrast (dfference) between the two groups 
 o + St ꞏ St  = mean of second group Strain II 
 
2.  Execute analysis.  Place data in model format:  

Column with response variable, Age A.   
 Column with explanatory variable,   Strain = I or II 
 Code model statement in statistical package according to the GLM 
  A = o + St ꞏ  St +  

 
 
  
 
 

Code for R 

 parameters reported by GLM routine   
̂ 0 =   7.5571  = Strain 1 mean, the intercept 

  ̂ St = 0.0428   =  Contrast, the difference between the two means. 
 
3a.   Evaluate structural model 

No slopes (straight lines) used, so no need to check for bowls/arches. 
 

MTB> ANOVA ‘A’ = ‘Strain’ 
MTB> GLM ‘A’ = ‘Strain’; 
SUBC> fits c3; 
SUBC> res c4. 
MTB > plot c4*c3 

> Daphniamodel <- lm(A ~ St, data=Daphnia) 
> plot(Daphniamodel) 
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3b.   Evaluate error model. 
 Homogeneous? 

The two stacks of residuals in this plots are of similar spread, so we conclude 
the residuals are homogeneous. 

  
 
 Normal? 

No, residuals area skewed toward 
negative residuals by outliers. 

 
 Independent?   Plot residuals at lag 1. 
  No evident up or down trend. 
  Residuals judged to be independent. 

  

 MTB > plot 'res' 'fits' 
  
         - 
     0.80+                                                       * 
         - 
 res     -  * 
         -  3                                                    * 
         -  *                                                    * 
     0.00+  *                                                    2 
         -                                                       * 
         - 
         - 
         - 
    -0.80+ 
         - 
         - 
         -                                                       * 
         - 
    -1.60+  * 
           --------+---------+---------+---------+---------+--------fits     
              7.5200    7.5280    7.5360    7.5440    7.5520 

 MTB > hist 'res' 
  
 Histogram of res   N = 14 
  
 Midpoint   Count 
     -1.6       1  * 
     -1.2       1  * 
     -0.8       0 
     -0.4       0 
      0.0       5  ***** 
      0.4       6  ****** 
      0.8       1  * 

MTB > plot 'res' 'lagres' 
         - 
     0.80+                                        * 
         - 
 res     -                                           * 
         -     *                                   *            * 
         -                                    *      * 
     0.00+            *                     *        * 
         -                                      * 
         - 
         - 
         - 
    -0.80+ 
         - 
         - 
         -                                     * 
         - 
    -1.60+                                             * 
           ------+---------+---------+---------+---------+---------+lagres   
             -1.50     -1.00     -0.50      0.00      0.50      1.00 
  



 14

3b.   Evaluate probability model  
      Conclusion.  Residuals are homogeneous and independent, but deviate from normal .  
 
4,  Partition df and variance  according to model. 
 
 
 
 Calculate dftotal = n – 1 = 14–1 = 13     Partition df according to model 
 Calculate SStot from Var(A), the variance of response variable. 
 SStot =  Var(A) ꞏ dftot = 0.42247 ꞏ 13  =  5.49214 
 Use statistical package to partition SStot according to model 
 

  
4. How good is the evidence for a difference?   

Calculate the likelihood ratio for model. 
 LR = (5.48571/5.492)-14/2 = 1.008 
 LR < 10  There is no evidence of a difference. 
 
5. Decide on mode of inference.  Is hypothesis testing appropriate? 
 In the absence of any evidence for a difference, evidentialist inference is appropriate. 
 However, the likelihood ratio was calculated assuming a normal error, which was not 

warranted by examination of the histogram of the residuals.  We could recompute the 
likelihood using randomization in place of assuming a normal error (Owen text). 

 
10. Report and interpret parameters of biological interest. 
   AഥI = 7.5571 days  stdev = 1.319 days  n = 7 
   AഥII =  7.5143 days   stdev = 1.976 days  n = 7 
 
The two means differ by only 6 parts in a 1000 (7.5571 – 7.5143)/7.5357 = 0.006 
The parameter of biological interest is the average time to maturity, regardless of strain, 
which is  Aഥ = 7.5357days   stdev = 1.997 days   n = 14 
There is no evidence of any difference in time to maturity between the two strains.   
 
Was the lack of evidence due to poor execution?  To address this we look at the 
minimum difference that could have been detected, given the variance and sample size. 
 
To do this we keep increasing the difference between two groups until the difference 
reaches a threshold, such as a Type I error of 5%.  In practice we add an offset to one 
group, compute the t-statistic and p-value, increase the offset, compute the t-statistic and 
p-value again, and continue until the p-value falls below the significance level (5%).   
  

ANOVA table headings on chalk board, upper right. 
GLM just to the left. 
Headings under model, then move to ANOVA table 

  GLM:   A  o  =   St ꞏ  St  +   
Source:   Total =  Strain + residual 
 df   13 =  12  + 1 
 SS     5.492 =  0.00641 + 5.4857 
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10. Report and interpret parameters (continued) 
This computation can be done in a spreadsheet. 

Age Strain Fits Residuals Strain 0 Offset 
8.002 0 8.3163 -0.31429 7.2 0.802 
7.902 0 8.3163 -0.41429 7.1 0.802 
9.902 0 8.3163 1.585714 9.1 0.802 
8.002 0 8.3163 -0.31429 7.2 0.802 
8.102 0 8.3163 -0.21429 7.3 0.802 
8.002 0 8.3163 -0.31429 7.2 0.802 
8.302 0 8.3163 -0.01429 7.5 0.802 

8.8 1 7.5571 1.242857   
7.5 1 7.5571 -0.05714   
7.7 1 7.5571 0.142857   
7.6 1 7.5571 0.042857   
7.4 1 7.5571 -0.15714 Strain 0 8.3163 
6.7 1 7.5571 -0.85714 Strain 1 7.5571 
7.2 1 7.5571 -0.35714 Diff 0.7591 

     
 

 

0.577  0.155 0.422 variance  
7.503 = 2.017 5.486 SS= 13*variance 

13.000  1.000 12.000 df  
  2.017 0.457 MS  
   4.412281 F  
   0.050037 p  

 
The two strains would have to differ by 0.76 days to reach the 5% Type I error threshold. 
I.e. the strains would have to differ by (0.7591/7.5571) = 10% to be significant. 
The analysis was capable of detecting a 10% difference in age. 
The absence of evidence for a difference cannot be attributed to a poorly executed study. 
 
Extra 
The t-test is a special case of a one-way ANOVA.  The F-ratio, by definition, is t2 
 
Here is the ANOVA table calculation of the F-ratio 

 
 
 
 

Here is the calculation of the F- ratio from the formula for the t-statistic. 
 

   
 

t
X X

n

I II I II

I IIs s


  



 
1 2 2

   
t2 = 0.11862 = 0.014 

 Source df SS MS F 
 strain 1 0.00641 0.00641 0.014 
 error 12 5.48571 0.45714 

   
 

t 
  


  

7 5571 7 5143 0 0

1
7

050476 0 40952

0 4286

0 9143
7

0 4286

0 3614
01186

. .

. .

.

.

.

.
.


