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Statistical Science.    
Part III.  The General Linear Model. 
Chapter 10.3   One way ANOVA, Fixed Effects 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9) The General Linear Model is more useful and flexible than a collection of 
special cases. 
Regression is a special case of the GLM.  We have seen an examples with the 
explanatory variable X fixed, with the explanatory measured with error, and for a non-
linear (exponential and power law) relations of response to explanatory variable.   
ReCap (Ch 10) ANOVA is a special case of the general linear model.   
The explanatory variable is on nominal scale. 
The t-test is a special case of ANOVA. The explanatory variable has two categories.  

 
Wrap-up.  GLM - ANOVA.  Explanatory variable is categorical. 
 For fixed factors we calculate the evidential support for the overall model. Planned 
comparison among 3 or more means will be more informative then unplanned (a 
posteriori) comparisons.   
 
 
 
 
 
 
 

Today:    Single Factor ANOVA - Fixed Effects 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9) 
10.1  Single Sample t-test 
10.2  Two Sample t-test 
10.3  One way ANOVA, Fixed Effects 
10.4 One way ANOVA, Random Effects 

"Let the computer find out" is a poor 
strategy for researchers who do not bother 
to think clearly about the problem of 
interest and its scientific setting.  The 
sterile  analysis of  'just the numbers'  
will continue to be a poor strategy for 
progress in the sciences.   
 
p117 in Burnham, K.P., D.R. Anderson. 
1998. Model Selection and Inference.   
NewYork: Springer. 
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Application of GLM.  One way ANOVA, fixed effects. 
 
Sokal and Rohlf (1995, Box 9.4) present pea section lengths in ocular units (0.114 
units/mm).  The purpose of the experiment was to test the effects of four sugars and one 
control on growth as measured by pea section length.  Instead of asking “What is the best 
test?” or What test do I use?” we ask: “What model do I use to analyze the effects?” 
 
1. Construct model 
Verbal model.  Pea section lengths in treated groups differ from the control (untreated) 
group and among themselves. 
 
From the verbal model we see that we have one response variable (pea section length) 
and an explanatory variable (four sugars and one control).   
We also see that the explanatory variable consists of groups—it is a categorical variable. 
 
Graphical model  A simple graphical model consists of  the mean for each group, along 
with a display of the data.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Which error model do we use? To gain some sense 
of the distribution of the data within each group we can use a boxplot, which shows the 
first, second, and third quartile.  The second quartile, inside the box, is the median.  The 
whiskers beyond the box are the 10th and 90th percentiles.  The dots are outliers.  The 
boxplot suggests some degree of heterogeneity (larger box for control) and some 
influence by outliers.  A normal error model is a reasonable place to start.  
 
The explanatory variable in this example is a fixed effect.  We infer only to these 
particular sugars.  With a random effect variable, we infer beyond the categories (units) at 
hand to a population of similar units. In the next section of this chapter we will see 
examples of random effect variables.   
 
Formal model Len  = o  + Trt  ꞏ Trt  +  normal 

 

C
on

tr
ol

G
lu

co
se

F
ru

ct
os

e

S
uc

ro
se

G
lu

c 
+

 F
ru

c

P
ea

 s
ec

tio
n

 L
en

gt
h

55

60

65

70

75

80



 3

 
2.  Execute analysis. 
 
Place data in model format. 
Data for oneway ANOVA often come in a table format-- a column of values for each 
category of the explanatory variable. The name of the variable is not always stated.  In 
this case we had to create a name -- Trt. Model format consists of one column of numbers 
for each variable in the model.  Our model has two variables.  We stack all 50 values of 
the response variable taken from 5 columns into a single column Len. We place the 
names of the categories into a second column, Trt, so that a value and its category name 
are in the same row.   
 
2.  Execute analysis. 
Code model statement in statistical package according to the GLM 
  Len =  + Trt ꞏ Trt +  
 

 
 
 

Fits and residuals from: 
 a. model statement output of fitted values and residuals (as above) 
 b. direct calculation of parameters (five means) 
 c. parameters reported by GLM routine 
 o = 61.94 ocular units = 7.06 mm 
 o +  Trt = [ 70.1 59.3 58.2 58.0 64.1 ] ocular units 
 
3. Evaluate model. 

Evaluate straight line assumption.  
 No straight lines (regression) used, so we skip this. 
 

3.  Evaluate error model.   
Plot residuals vs fitted values.  

 
Homogeneity? 
The plot confirms the impression gained from the 
boxplot.  Residuals extend over a wider range in the 
control than the treated groups.   The variability does not 
increase with increase in fitted value, so alternative error 
models offer no remedy. We will proceed on a judgment 
that the observed heterogeneity will have little effect on 
the overall ANOVA (comparison of all five groups).  

 

MTB> ANOVA ‘Len’ = ‘Trt’ 
MTB> GLM ‘Len’ = ‘Trt’ 
SUBC> fits c4; 
SUBC> res c5. 
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3.  Evaluate error model.   
Normal errors  ? 
Histogram looks normal.   
The residuals fall close to the normal error line 
in the QQ plot (not shown).   
 
It is interesting to note that if we check this 
assumption on ‘the data’ before computing the 
residuals, we would conclude that the 
assumptions are clearly violated.  In particular 
the distribution skews strongly to large values.  
The outliers identified in the boxplot appear as a 
stack of values in the upper tail of the 
distribution.  Evaluating the response variable 
produces the wrong conclusion. 
 
Independent errors?  We have no information on 
the order in which observations were made.  The 
observations in the order shown in Sokal and 
Rohlf (1995) are independent at lag 1 (no 
correlation with adjacent observation). 
 

 
 
 
 
 
 
 
 
 
 
 

Conclusion.  In this example we were looking for large violations because sample size 
n is well over 30. The violations were judged to be minor.  Checking the assumptions 
before computing the residuals produced the wrong conclusion, that a better error 
model was needed.   A medical analogy would be chemotherapy for a lump, before 
determining whether the lump is benign or cancerous.   

 



 5

4. Partition df according to the model.   
 49 = dftotal n  1  50  1 = 49 
   4 = dfTrt   5 categories in factor Trt - 1 df   5  1 = 4 
 45 = dfres  dftotal   dfTrt    49  4 = 45 
 
    Partition SS according to the model.  
   SStot = var(Len )  ꞏ  dftotal Full model 
 1322.82 SStot =  26.996 ꞏ   49    =  1322.82  
   SSres= Σ ( var(Leni )  ꞏ  dfi )  i = groups 1 to 5 
   245.5  SSres Reduced model 
 1077.3  SSmodel = 1322.82 – 245.5 = 1077.3 Improvement in fit 
 
 For any GLM, we can write the model with the partitioning of df and SS 
 Len =  + Trt ꞏ Trt +  
 df  49  =    4 + 45 
 SS 1323 = 1077 + 246 
 

Calculate likelihood ratio for omnibus (overall) model. 
 LR = ( 245.5/1322.82)-50/2 = 1018 
 
5. State population and whether sample is representative. 

Population is all possible measurements, given the method of applying treatments and 
the protocol for taking measurements.  It is taken to be representative (not biased). 
This is a fixed effect model, we are inferring only to these 5 categories.  We are not 
inferring to other sugars or combinations of sugars.   

 
Decide on mode of inference.  Is hypothesis testing appropriate? 
This is a controlled experiment where we wish to infer to similarly conducted 
experiments in the future and anywhere else, given the same species of pea plant. 
To draw the inference from the sample to the population we will use hypothesis 
testing. 

 
6.  State the full (null) and reduced (alternative) model pairs. 

The research hypothesis is that the treatments differ in effect. 
HA: µControl    µGlucose   µFructose    µSucrose    µGlucose+Fuctose 

The null hypothesis is the treatments do not differ in effect. 
Ho : µControl =  µGlucose = µFructose =  µSucrose =  µGlucose+Fuctose 

 
This is equivalent to the following pair of hypotheses. 

  The symbol Trt ꞏ Trt  stands for the collection of 5 means. 
  If the means differ, then var( Trt ꞏ Trt  ) >0  HA: var( Trt ꞏ Trt  ) > 0 
  If the means do not differ, var( Trt ꞏ Trt  ) =0 HA: var( Trt ꞏ Trt  ) = 0 

HA/Ho pairs are statements about parameters of the population.  They are 
not statements about the estimates of the parameters, which we compute 
from the data. 
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6.  State the null and alternative hypothesis pairs.  

With a fixed effects model, it is natural to investigate the sources of differences 
among groups, if the overall test reveals a difference. 

For experiments, we usually have some expectations about the direction and 
sometimes about the strength of the contrasts among groups.  Based on these, we 
can undertake planned or a priori (before the fact) comparisons.   Such comparisons 
use our biological understanding more effectively than unplanned or a posteriori 
(after the fact) comparisons.  We can set up planned comparisons any way we like, 
but we need to take into account the number of comparisons. 

 
HA / Ho for planned comparisons. 
In this example the natural comparison is the control versus the other four treatments. 

One degree of freedom used.  
HA: control  (1/4)( glucose + fructose +  sucrose +gluc+fruc) 

 
A second comparison is mixed sugars versus pure sugars. One df used.  

   HA:  (gluc+fruc)   (1/3)( glucose + fructose +  sucrose)  
 

A third comparison is within the pure sugars:  polysaccharides (sucrose) versus 
monosaccharides (glucose and fructose).  One df used. 

HA:  (sucrose)   (1/2)( glucose + fructose )  
 

Other choices are possible.    
 

Test statistic, distribution, Type I error. 
State test statistic   F-ratio 
Distribution of test statistic  F-distribution 
Type I error    Controlled at 5%, multiple tests. 

 
With multiple tests, we need to take into account the number of comparisons.  For 
example, if we undertake 20 comparisons, we expect on average one false positive 
conclusion, i.e. failure to reject Ho (5% = one in 20).  If we use a fixed criterion of 5% for 
multiple tests, then we expect the error rate after multiple tests (called the 
experimentwise error rate) to exceed the 5% level.   This suggests that we lower the 
criterion level according to the number of tests, so that the experimentwise error rate does 
not rise above our stated tolerance for Type I error.  One solution is to divide the 
tolerance level by the number of tests.  Thus with 3 tests we would use 5% / 3 = 1.67% to 
declare significance.  This is called the Bonferroni method for limiting the 
experimentwise error rate.  An alternative method is called the Dunn-Sidak method (Ury 
1976 in Sokal and Rohlf 1995).  For k tests, the experimentwise error rate is  
 exp ( )wise

k  1 1   hence we use     1 1 1( )exp
/

wise
k   for our error rate. 

For three a priori tests we would use     1 1 0 05 0 0171 3( . ) ./ to achieve a 5% error rate. 
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7. Move  df, and SS to ANOVA table.  Compute MS and F 
 

  
Calculate Type I error from F-distribution. 

 p = 10-17  =FDIST(49.37,4,45)   from spreadsheet function 
Type I error is calculated from the likelihood ratio so we expect the Type I error to be 
as small as the likelihood ratio was large.   

 
8.  Recompute p-value if necessary.  

Recalculation is hardly necessary, given the magnitude of the likelihood ratio and the 
consequently minuscule Type I error.  The a priori tests are of concern as they are all 
single degree of freedom tests, which are susceptible to deviations from homogeneity. 
To protect ourselves from poor estimates of Type I error due to homogeneous errors, 
we could use a randomized p-value on the single degree of freedom tests. However, we 
saw little evidence of heterogeneity in the residual vs fit plot.   

 
9. Report statistical conclusion about model terms.  

We reject the null hypothesis of no difference in pea section length among the 5 groups 
(control and 4 treatments).  F4,45 = 49.37,   p = 10-17 
Reject    Ho: µControl =  µGlucose = µFructose =  µSucrose =  µGlucose+Fuctose 
We cannot however “accept” the HA. 
Accept   HA: µControl   µGlucose  µFructose  µSucrose   µGlucose+Fuctose 
The alternative hypothesis survives the test.   
Decision against a fixed Type I error is not evidence for HA 
We use the LR to report the evidence:  
The alternative is 1018 times more likely than the null. 
 

10.  Report science conclusions and interpret parameters of biological interest 
Where are the differences, among the 5 groups ? 
Two approaches A priori Planned comparisons. Use prior knowledge. 
   A posteriori.  Hunting. See Burnham and Anderson quote. 
Statistical packages tend to foster the use of  a posteriori comparisons. 
In most situations, one can develop a priori comparisons that use information more 
effectively.  Often these are one-tailed (directional) comparisons and hence have more 
capacity (power) to detect differences.  Planned comparisons are more informative than 
uplanned comparisons.  
 
We look at the three a priori comparisons.  To achieve an experimentwise error rate of 
5% will use  = 0.017 from the Dunn-Sidak formula.  

Source DF SS MS F P 
 trt 4 1077.3 269.330 49.37 <0.001 
 Error 45 245.5 5.456 
 Total 49 1322.8 [26.996] 
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10.  Report and interpret parameters of biological interest 
First planned comparison:  Growth in treated media differs from that in untreated. 
 
HA: control  (1/4)( glucose + fructose +  sucrose +gluc+fruc) 
 
When we compare control versus 
the 4 treatments, the resulting 
ANOVA table uses the mean 
square error based on two groups, 
rather than on 5 groups (as in previous analysis).  
 

 For a priori comparisons we calculate the F-ratio 
based on the MSerror estimate from 5 groups with 
45 degrees of freedom.   
MSerror = 245.5/45 
F = 152.64     instead of  F = 82.45 
 

Heterogeneity of the residuals was a concern for this test.  However, the concern matters 
little, given size of the F-ratio. 
 
The strength of the difference is of 
interest so we calculate the effect 
size.  The estimate of suppression of 
growth by sugar relative to control is  
(70.1  59.9)/70.1 = 15% 
 
 
 
The confidence limits for the treated 
group   LL = 58.95 UL = 60.85 
The confidence limits for the control group   LL = 67.56 UL = 72.64 
The confidence limits do not overlap.   
 
 

Source      DF         SS         MS       F 
 aprior1      1      832.3     832.32   81.45 
 Error       48      490.5      10.22 
 Total       49     1322.8      27.00 

 MTB > let k1 = 245.5/45  
 MTB > let k2 = 832.32/k 
 MTB > cdf k2 k3; 
 SUBC> f 1 45. 
 MTB > let k4 = 1-k3 
 MTB > print k2 k4 
 K2       152.564   # F-ratio 
 K4       0         # p-value 

 MTB > invcdf .975 k5; 
 SUBC> t 45. 
 MTB > print k5 
 K5       2.01409 
 MTB > let k6 = 59.9 - k5*.472 
 MTB > let k7 = 59.9 + k5*.472 
 MTB > let k8 = 70.1 - k5*1.26 
 MTB > let k9 = 70.1 + k5*1.26 
 MTB > print k6-k9 
 K6       58.9494     # lower 95% CI 
 K7       60.8507     # upper 95% CI 
 K8       67.5622     # lower 95% CI 
 K9       72.6377     # upper 95% CI 
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10.  Report and interpret parameters of biological interest 
Second planned comparison: Growth in mixed versus differs from that in pure sugar. 
 
HA:  (gluc+fruc)   (1/3)( glucose + fructose +  sucrose) 

 We compare the two groups (one      
with 10 and one with 30 
observations) to obtain the MS due 
to the two groups. 

 
We use the MSerror from all 5 groups to recompute 
the F-ratio. The F-ratio is 8.82 instead of 6.11, as 
in the ANOVA table. 
 

 
The confidence limits are on 
the order of +/ 2 units. 
 
Mixed glucose + fructose reduces growth by  (60.533  58)/60.533) = 4% relative to pure 
sugars 
 
Third planned comparison:  Growth in polysaccharide differs from that in 
monosaccharides.  
HA:  (sucrose)   (1/2)( glucose + fructose )   
 
 
 

 
 
 
The monosaccharides suppress growth more than the 
polysaccharide (sucrose). 
 

 

  Source      DF         SS         MS      F 
 df2          1      48.13     48.133    6.11 
 Error       38     299.47      7.881 
 Total       39     347.60      8.913 

 MTB > let k2 = 48.133/k1 
 MTB > cdf k2 k3; 
 SUBC> f 1 45. 
 MTB > let k4 = 1-k3 
 MTB > print k2 k4 
 K2       8.82275        # Fratio 
 K4       0.00475895     # pvalue 

 MTB > print k6 - k9 
 K6  59.3870      # lower 95% CI  pure sugar 
 K7  61.6790      # upper 95% CI 
 K8  57.0997      # lower 95% CI  mixed sugar 
 K9  58.9003      # upper 95% CI 

Source      DF         SS         MS       F      P 
 df3          1     190.82    190.817   58.94  0.000 
 Error       28      90.65      3.237 
 Total       29     281.47      9.706 

 MTB > let k1 = 245.5/45 
 MTB > let k2 = 190.817/k1 
 MTB > cdf k2 k3; 
 SUBC> f 1 45. 
 MTB > let k4 = 1-k3 
 MTB > print k3 k4 
 k3       34.9766     # Fratio 
 K4       0.000000417 # pvalue 

MTB > describe c11; 
 SUBC> by c12. 
      df3        N     MEAN   MEDIAN   TRMEAN    STDEV   SEMEAN 
 Gluc       1   10   59.300   59.500   59.250    1.636    0.517 
 Fruc       2   10   58.200   58.000   58.125    1.874    0.593 
 Sucr       3   10   64.100   64.500   64.000    1.792    0.567 
 
 MTB > aoveoneway c22 c23 c25 
                                    INDIVIDUAL 95 PCT CI'S FOR MEAN 
                                    BASED ON POOLED STDEV 
 LEVEL       N      MEAN     STDEV  --+---------+---------+---------+---- 
 glucose    10    59.300     1.636       (---*----) 
 fructose   10    58.200     1.874  (----*---) 
 sucrose    10    64.100     1.792                          (---*----) 

+ + + +
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10.  Report and interpret parameters of biological interest 
 
Conclusions from the 3 planned comparisons of parameters (means). 
 We reject the hypothesis that a 2% sugar solution has no effect on growth.   
  F1,45 = 152.564     = 0.017, p < 0.0001 
 We reject the hypothesis that Mixed glucose + fructose has the same effect as 

 pure sugars 
  F1,45 = 8.82    = 0.017 > p =  0.00476 
   We reject the hypothesis that monosaccharides (fructose, glucose) have the same 

effect as the polysaccharide (sucrose). 
   F = 34.98    = 0.017 > p =  0.00000417 
 
Conclusions based on confidence limits for the 3 planned comparisons. 
A 2% sugar solution (4 groups) reduces growth by (70.1  59.9)/70.1 = 15% 
 Control: mean(Len) = 70.1 units, 95% CI = 67.6 to 72.6units, n = 10 
 With sugar: mean(Len) = 59.9 units,   95% CI = 58.9 to 60.9 units, n = 40 
Mixed glucose + fructose reduces growth by  (60.533  58)/60.533) = 4% relative to pure 
sugars. 
 Mixed: mean(Len) = 58 units, 95% CI = 57.1 to 58.9,  units, n = 10 
 Pure sugar: mean(Len) = 60.5 units,   95% CI = 59.4 to 61.8 units, n = 30 
Sucrose (a polysaccharide)  reduces growth less than glucose or fructose 
(monosaccharides). 
 Sucrose: mean(Len) = 64.1 units, 95% CI = 62.6 to 65.6 units, n = 10 
 Fructose: mean(Len) = 58.2 units, 95% CI = 56.7 to 59.7 units, n = 10 
 Glucose: mean(Len) = 59.3 units, 95% CI = 57.8 to 60.8 units, n = 10 
 
For these three planned comparisons, confidence limits do not overlap and so conclusions 
were readily drawn from examination of the confidence limits. 


