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Statistical Science.    
Part III.  The General Linear Model. 
Chapter 10.4   One way ANOVA, Random Effects 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9)  The General Linear Model is more useful and flexible than a 
collection of special cases. 
Regression is a special case of the GLM.  We saw  examples with the explanatory 
variable X fixed and with the explanatory measured with error. 
ReCap (Ch 10) ANOVA is another special case of the general linear model.   
The relation of the  response to explanatory variable is expressed as set of means.  When 
classes within a factor are fixed by experimental design, it is natural to investigate which 
classes are responsible for significant variation.  A priori (planned) comparisons are 
based on our knowledge of the reasons for collecting the data. These are more 
informative than a posteriori (after the fact) comparisons. 

 
Wrap-up.  GLM.  ANOVA.  Explanatory variable on nominal scale. 
Random factor.  Inference to a population of units instead of inference to fixed factor 
categories.   
 
 
 
 

Today:  ANOVA as a special case of the GLM.  
  Single Factor ANOVA - Random Effects 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9) 
10.1  Single Sample t-test 
10.2  Two Sample t-test 
10.3  One way ANOVA, Fixed Effects 
10.4 One way ANOVA, Random Effects 
 Fixed versus random effects 
 Example: Scutum widths 

Data from Sokal and Rohlf 
Tick scutum width on 4 hosts 
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New Concept:  Random effects.  
Today, we start with a new concept, random effects.  Until today we have been analyzing 
our response variable relative to fixed effect factors.  We can also analyze our response 
variable with respect to random effect factors.  We do not intervene nor do we choose 
levels of our categorical variable.  Why would we do this?  We are interested only 
statistical control for random variation in our experimental units.   For example we would 
use such a study to plan for an experiment in plots on the landscape where we cannot 
control for spatial variation by forcing plots to uniformity. 
 
A random factor has categories that are considered a sample from some larger population 
of units, such as plots or fields in an agricultural experiment.  A fixed factor has levels 
that are the only ones of interest, as in the analysis of sleep data in relation to drug.  Here  
are some guidelines (from D.G. Kleinbaum and L.L. Kupper. 1978.  Applied Regression 
Analysis.  Boston: Duxbury Press). 
 
   Random        Fixed         Either, depending on situation   
Subjects   Sex (M F)   Locations 
Litters   Age (age groups)  Time 
Observers   Drugs, Treatments 
 
With a fixed factor we are inferring only to the levels at hand. With a random factor we 
assume that the levels are a sample from a larger population of levels or units, which 
vary.   With a random factor we infer to a larger population of levels or units that might 
have been chosen.  The choice between random and fixed depends on how we define the 
population.  Here is an example. A biologist carries out an experiment on the effects of 
nutrient enrichment on the growth of marine algae, at three different intertidal locations.  
Then repeats the experiment two more times, so that each location is exposed to each 
nutrient level on all three occasions.  The nutrient factor is clearly fixed.  The location 
factor is usually random.  However, the location factor could be taken as fixed, if the 
biologist had chosen the locations to represent the range of possible conditions in the 
study area.   The three occasions can  also be taken as  either random or fixed.  They  
would be random if  known sourced of temporal variation, such as season and  time of 
day were held the same.  The become fixed if  occasions differ with respect to a known 
source of temporal variation.  
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 One way ANOVA, Random Effects. 
 
Example.  Data from Box 9.1 of Sokal and Rohlf 2012, p. 209.   
Does the variance in tick size among hosts (rabbits) exceed variance within? 
 
1.  Construct model. 
 
What is the best test? 
What model do we use to analyze this data? 
 
Verbal model. 

Scutum width Wscut varies among hosts H (4 rabbits) 
 
Graphical model 

Plot showing Wscut as a function of H 
Model consists of dispersion around 4 means, one for each rabbit. 

 
What are the response and explanatory variables? 

Response variable is scutum width of ticks, Wscut = microns 
Explanatory variable is host, H = Rabbit A, Rabbit B, 
Rabbit C, Rabbit D 

 
Are the explanatory variables categorical? 
 Yes. 
 
Are the categorical variables random or fixed? 

Rabbits were a ‘random sample of the population of host 
individuals’  (Sokal and Rohlf 2012, p211). 

 
The data appear to be symmetrically distributed around the 
model (the means) so we will use a normal error model.  
 
Formal model Wscut = o + H ꞏH +  
 
2.  Execute analysis. 
Place data in model format:  
 Column with response variable, scutum width Wscut.   
 Column with explanatory variable 
In general, it is best to avoid using numeric labels for categorical variables.  
These are too easily taken as ratio scale rather than nominal scale (categorical) variables. 
  Wscut HostNumber HostLabel 
 1 360 1 A 
 … 
 8 382 1 A 
 9 338 2 B 
 10 342 2 B  
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2.  Execute analysis. 
Code the model statement in statistical package according to the GLM 
   Wscut = o + H ꞏH +  

 
 
The ANOVA code on the left worked before graphics interfaces became available.  
It still works. 
The random effects code (1 |Host) on the right worked in 2019.   
Four years later this code no longer works.  
 
The lmer() call in R uses 1|Host. 
It does not produce residuals.  
It cannot be used for model checking 
of this analysis.   
 
In this analysis the  parameters (means) are no longer of interest. 
The variance among rabbits, relative to within, is of interest.  
The partitioning of the total variance (among versus within host) is of interest. 
 
Digression on notation. 
There are several different symbols for estimates of variance and standard deviation.   
 Placing a hat over the greek symbol 𝜎ොௐ  for the standard deviation. 
 Using a roman letter sW for estimate of 𝜎ௐ 
Subscript notation becomes cumbersome for the variance 𝜎ଶௐ 
It becomes more cumbersome for the estimate of the variance  𝜎ොଶௐ 
An alternative is to use a function for the estimate:  stdev(W), var(W). 

 
  

TSizeRanMod<lm(Wscut~(1|Host), ) 
TSizeRanMod$fitted.values 
TSizeRanMod$residuals   

MTB> ANOVA ‘Wscut’ = ‘Host’ 
MTB> GLM ‘Wscut’ = ‘Host’; 
SUBC> fits c4; 
SUBC> res c5. 

TSizeRanMod<lmer(Wscut~(1|Host), ) 
TSizeRanMod$residuals  [null] 
TSizeMod<lm(Wscut~(1|Host), ) 
TSizeMod$residuals  [7.75 3.75 ….. 

Fixed versus random effects  -  Notation. 
 
Fixed effects ANOVA.  Explanatory variable is fixed treatment. 
  This is written  Y = µ +  +    
  The fixed factor is shown as a greek letter  
Our interest is in contrast among means. 
 A priori contrasts are used in confirmatory analysis. 
 A posteriori contrasts are more exploratory in nature. 
 
Random effects ANOVA.  Explanatory variable is random. 
  This is written  Y = µ + A +   
   The random factor is shown as a roman letter A. 
Our interest is in variance in Y among categories. 
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3.  Evaluate model.   
3a Structural model.   

No regression lines estimated in 
ANOVA so no need to check straight line 
3b Error model.  Homogeneity? 

Plot residuals versus fitted values. 
 
Residual versus fit plot shows vertical 
distribution of residuals to be about the same 
in all four groups.  So residuals are judged 
homogeneous. 
 
When this assumption is not met, the plot 
of residuals versus fits will often show left 
or right facing fans for any GLM, 
including regression and ANOVA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Residuals normal ? 
The residuals are close to 
normal. The scutum widths are 
less so. 
 
If we evaluate the assumptions 
before calculating the residuals, 
we might erroneously conclude 
that the residuals are not 
normal.  
 
 
 
 
 

For ANOVA, there are a 
limited number of fitted 
values, hence the plot is 
present at only a few points 
long the x-axis.  The fan 
pattern is the same in both 
plots, but vertical swaths are 
missing from the plot with 
categorical variables. 
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3b Evaluate error model.   
Residuals independent?  
Yes.   
Residuals in order of data presented in 
text book show no upward or 
downward trend. 
 
Conclusion.  
Normal error model acceptable. 
 
4.  Partition df and SS according to the model 

Compute total degrees of freedom      dftotal = n  1 = 37  1 = 36 
Partition dftotal according to model, using rules 

 4 hosts                dfH = 4  1 = 3 
 dfres = dftotal    dfH             dfres = 36  3  = 33 

df denotes the degrees of freedom for each factor. 
 

 
 

Compute SStot = Var(Wscut )  ꞏ  dftotal      
 1.  SStot  =  (n 1) *  Var(Wscut ) = 36 * 155.2  = 5586 
 2.  SStot =   Wscut 2   n1 (Wscut )2  = 4792797.3   371  ꞏ 13308.92  = 5586 

 

 
 

GLM  Wscut   =   o  +   H ꞏ H   +    
Source  Total     =  Host + Resid 

Each parameter that is estimated from the data uses up one degree of 
freedom.  A slope uses up one degree of freedom.  An explanatory 
variable consisting of n classes uses up n   1 df.  
1 df is lost in estimating the grand mean.  

MTB> let k2 = mean(‘width’) 
MTB> let k3 = SSQ(‘width’ - k2) ) 
MTB> print k3 
MTB> let k1 = (371)*stdev(‘width’)*stdev(‘width’) 
MTB> print k1 (should be same as k3) 

GLM  Wscut   =   o  +  H  ꞏ H   +    
Source  Total =  Host + error 
 n    37   = 1   + 3  + 33 
 df    36  =  3  +  33 
SS  SStot  =  SShost  +  SSres  
  5586 =  1808  +  3778 
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4.  Partition SS according to the model 
 
 

 

W scut

 0 

A B DC

•          • 
      • 
   •    • 

•          • 
     • 
   •    • 

•          • 
      • 
   •     • 

•            • 
       • 
   •     • 

Host

W scut  = 0   +    HꞏH + 
SStotal = SSHost + SSresidual

df: n 1 = ngroups 1 + n  groups 

W scut

 0 

A B DCHost

W scut

 0 

A B DC

•          • 
      • 
   •    • 

•          • 
     • 
   •    • 

•          • 
      • 
   •     • 

•            • 
       • 
   •     • 

Host

= 359.7

+12.55
5.33 
4.4 
+ 1.6

H  =

SStotal = Var(Wscut) ꞏ df

SSHost  = Var( H) ꞏ df 

Ssresidual = Var(res) ꞏ df 
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4. Calculate likelihood ratio for omnibus model 
How good is the evidence for variance in size of ticks, among rabbits? 
Full model:  Wscut = o    +  
Reduced model:  Wscut = o + H ꞏH +  

 
LR =/  L(o ;  Wscut ) / L(o + H ;  Wscut )   

  
LR = (5586)37/2 / (3778) 37/2 / = 10994 

  
The alternative model (variance due to hosts) is over 105 times more likely than the 
null model, no variance due to hosts.  

 
4. State model pair. 
 
 The focus of the random effects analysis is the variance in parasite size among rabbits.  

The focus differs from fixed effect factors, where the HA/Ho pair is stated as contrasts 
among means.  

 
Full model:  Var(H ꞏH) > 0 
LR > 1 
 
Reduced model:  Var(H ꞏH) = 0 
LR = 1 
 
 
 
 
5.  State the population and whether the sample is representative. 
Text examples present data, rather than data situations.  In practice most data is collected 
in a situation where there is considerably more known than just the numerical values of 
each quantity. This information can be used to judge a reasonable target of inference. 
Statistical inference is a procedure for making statements about populations based on 
samples.  The statement about a population is valid if (1) the sample is representative of 
the population and (2) logical statistical procedures are used. 
 
The conditions for taking the sample are important.    
Hypothetical populations are used in many applications.  Here we assume that the results 
can be inferred to any future study carried out according to the same protocol. 
Enumerable  populations are sometimes used.  We can enumerate all possible units, 
sample randomly from these units, and from this assume that the sample represents the 
larger population of units. 
 
For this example (Scutum widths) we are going to infer to a hypothetical population of 
rabbits similar to those in this sample. 
Conclusions by statistical inference apply to any study that uses the same measurement 
protocol, including the method used to sample rabbits. 

“The true group means deviate from the true grand mean, 
where there is variance in size, among hosts” 

“The true group means do not deviate from the grand mean, 
where there is no among host variance in tick size.” 
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5. State the population. Fixed versus random effect factors. 
We have data from only four rabbits and one species of tick.  We could be very cautious 
and define the population as "all possible measurement of scutum widths from ticks on 
these four rabbits only."   If we were to do this, then we have a model that applies only to 
these 4 rabbits.  Of more interest is a random effects model, where we treat the rabbits as 
a sample of all possible rabbits. 
 
5. Decide on mode of inference.  Is hypothesis testing appropriate? 
In this case a measure of weight of evidence would be sufficient.  At the same time, 
inference to a population is valid because we can define a population based on the 
experimental protocol.  We will report the likelihood ratio as a measure of evidence, 
without hypothesis testing.  
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Here are the data equations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

MTB > name c3 'fits' c4 'res' 
 MTB > print 'width' 'fits' 'res' 
  
  ROW   width       fits        res 
  
    1    380    372.250     7.7500 
    2     376    372.250     3.7500 
    3     360    372.250   -12.2500 
    4     368    372.250    -4.2500 
    5     372    372.250    -0.2500 
    6     366    372.250    -6.2500 
    7     374    372.250     1.7500 
    8     382    372.250     9.7500 
    9     350    354.400    -4.4000 
   10    356    354.400     1.6000 
   11    358    354.400     3.6000 
   12     376    354.400    21.6000 
   13     338    354.400   -16.4000 
   14     342    354.400   -12.4000 
   15     366    354.400    11.6000 
   16     350    354.400    -4.4000 
   17     344    354.400   -10.4000 
   18     364    354.400     9.6000 
   19     354    355.308    -1.3077 
   20     360    355.308     4.6923 
   21     362    355.308     6.6923 
   22     352    355.308    -3.3077 
   23     366    355.308    10.6923 
   24     372    355.308    16.6923 
   25     362    355.308     6.6923 
   26     344    355.308   -11.3077 
   27     342    355.308   -13.3077 
   28     358    355.308     2.6923 
   29    351    355.308    -4.3077 
   30     348    355.308    -7.3077 
   31    348    355.308    -7.3077 
   32    376    361.333    14.6667 
   33    344    361.333   -17.3333 
   34    342    361.333   -19.3333 
   35     372    361.333    10.6667 
   36     374    361.333    12.6667 
   37     360    361.333    -1.3333 
 
sd2          =  12.462          7.092        10.242 
sd2 ꞏ36 = 155.25   50.27    104.86 
SS     = 5589    1809     3775 

F
SS df

SS df

F

F

fits fits

res res







/

/

/

/
.

1808 3

3778 33
526
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7.  Complete the ANOVA table, showing % variance at each level  
 
 
 
 
 
 

8.  Recompute the p-value by randomization if assumptions are not met. 
Not necessary. Assumptions met. No estimates of parameters or p-values. 

 
9.  Report statistical conclusion.  

LR = L(o , H |  Wscut )  /  L(o |  Wscut )  = 105 

The full model is105 times more likely than the reduced (null) model. 
 The variance among hosts accounts for 32% of the variance. 
 
10.  Report science conclusions.   
The variance among the means is of interest.  How large is the variance among groups, 
compared to the total variance across all ticks?  This information will be used in planning 
further experiments. 
 
The among unit SS =  1808 / 5586 = 32% 
 
The among rabbit variability is far from negligible.   
Sokal and Rohlf (2012) list several biological processes that could generate among host 
variability: -the modifying influence of the host on ticks 
  -ticks on any one host are siblings 
  -differential selection on size of ticks, among hosts 
  -different geographic sources of ticks for each host 
From the biology of this species of tick, Sokal and Rohlf  (2012) consider the genetic 
explanation (siblings on one host) to be the leading explanation. 

 Source   df     SS  % SStotal     Source 
   Host    3    1808   32.4   SS among 
   Res     33     3778     67.6  SS within 
   Total  36     5586 


