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Statistical Science.    
Part III.  The General Linear Model. 
Chapter 9.3   Regression.  Explanatory Variable Measured with Error. 
 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
Frequency distributions, a key concept in statistics, are used to quantify uncertainty.  
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9)   The General Linear Model is more useful and flexible than a collection 
of special cases. 
Regression is a special case of the GLM.  We have seen two examples, both with the 
explanatory variable X fixed, either by experiment or by definition of fixed classes. 

 
Wrap-up 
 Regression is a special case of the GLM. 

When the explanatory variable is measured with error, parameters are estimated 
with bias, depending on the magnitude of the error. 

 
 
 
 
 
 
 

Today: 
Regression. Special case of the general linear model.  
 Explanatory variable measured with error.  

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III 
9.1 Explanatory Variable Fixed by Experiment 
9.2 Explanatory Variable Fixed into Classes 
9.3 Explanatory Variable Measured with Error 
9.4 Exponential Functions 
9.5 Power Laws.  Linear Regression 
9.6  Model Revision 

Data files & analysis 
SrBx1412.out 
Ch9.xls 
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GLM-  Regression where the explanatory variable is measured with error. 
 Explanatory variables measured with error are common in observational studies, where 
there is often little opportunity to reduce error.  An explanatory variable measured with 
error can result in biased estimates of the slope parameter X.  We need to consider the 
magnitude of the bias when the explanatory variable is measured with error.  
 
 Fish egg example. 

The example  is the number of eggs per female, in cabezon fish 
(Scorpaenichthys marmoratus) of several different sizes (Box 14.12, 
Sokal and Rohlf 1995).   
 
We expect larger fish to produce more eggs than small fish. Once 
we frame the question in light of the biology we find that the 
analysis sits uneasily within the conventional logic of rejecting the 
null hypothesis.  Rejecting the null hypothesis of no change in egg 
number with change in fish size is of little interest.  Instead, we will 
focus on  more plausible hypothesis, that egg number increases with 
body size in 1:1 relation.  

 
 
1. Construct the model 
Verbal model.   
 Egg number Neggs increases with body mass. 
 
Graphical model.    
 The simplest model is a linear relation of Neggs 

to M 
 
Formal model. 
 Define variables. 
 Response variable is Neggs the number of kiloeggs per fish (ratio scale) 
 Explanatory variable is M the body mass per fish, to nearest 100 grams (ratio scale) 
 Define symbols, units, type of measurement scale. 

  Units   Dimensions  Type of measurement scale 
Neggs kiloeggs   #   ratio 
  kiloeggs   #   ratio 
M  hectograms   Mass   ratio 
M  kiloeggs/hectogram # M1   ratio 

 
 Write formal model. 
  For population:  Neggs =  + M  ꞏM +  
  For sample:   Neggs = a + bM  ꞏ M + error 
        same as:   Neggs =  +   M  ꞏ M + error 

 Wt 
KiloEggs hectograms 

61 14 
7 17 

65 24 
69 25 
54 27 
3 33 

87 34 
89 37 

100 40 
90 41 
97 42 

 

 

 
M 

Body Size (hectograms) 

N eggs 
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2. Execute model.   Place data in model format. 

    Data are already in model format: two columns Neggs and  M 
The model statement is used to execute the analysis in a statistical package. The 
code we use will have a similar structure in any package. 

 Here are two examples, one in Minitab, one in R. 
 
 
 

 
  
 
 
2. Execute model.   Estimate parameters. 
 Statistical packages report the parameter estimates as slope with intercept. 
     Neggs  =  19.77  +  1.87 M 
 

The package estimates the parameters of the general linear model:  ̂ o and ̂ M  

 
The estimates are:   

     =  mean(M)  =  30.36 hectograms, 
   ̂ o  =  mean(Neggs)  =  76.545 kiloeggs ,  

  ̂ M  =  1.87 kiloeggs/hectogram = slope of line that minimizes vertical deviations 

    =  ̂ 0   ̂ M (mean(M) = 76.545  1.87(30.36) 
    =  19.77 kiloeggs 
 
 To obtain the "best" estimate of the parameters of the regression line, we fit a line 
through the mean of all the data ̂ o = mean(Neggs) and mean (M).  We use this point 
because it is the best estimated point on the graph.  We don’t make an estimate at the y-
intercept  , where the data are usually non-existant or too sparse to obtain a good 
estimate. 
 There are several ways of estimating the slope M. Texts on mathematical statistics 
describe the methods.  A common and widely used method is a formula that gives the 
estimate M  by minimizing the sum of the squared deviations of the data points from the 
line. This is equivalent to maximum likelihood estimate when using a normal error.  
 
2. Execute model.   Compute fitted values and residuals. 

Statistical packages typically produce parameter estimates and the ANOVA table.  
Diagnostic plots for the residuals need to be requested.   

 

    Neggs =  + M ꞏM +  
MTB> regress ‘Neggs’ 1 ‘Mass’; 

    Neggs =  + M ꞏM +  
LM.Negg <- lm(Negg ~ Mass) 
plot(LM.Negg) 
anova(LM.Negg) 
summary(LM.Negg) 

 Neggs = ̂ o + ̂ M   ꞏ (M   )  + res  
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3.  Evaluate model for downward bias.   
Because this is an observational study where the explanatory was measured with error, 
there will be downward bias on the parameter M . The magnitude depends on the size of 
the error.  We have no estimate of the total measurement error * in this case.  To 
illustrate the calculation we will use a component of measurement error that is always 
present, the absolute error, defined as half the resolution of the explanatory variable. In 
this case the absolute error is half a hectogram.  
The model is: 
    Neggs  =  + M ꞏ M +  
 
    M*  =  M  + * 
 
    Where * is the absolute measurement error. 
 
If  , *,  and M* are normally and independently distributed the regression coefficient 
M* will be smaller than M by a factor k. 
 
  M* = kꞏM  k = 2

M / ( 2
M + 2

M* ) 
 
The factor k is called the reliability ratio, or sometimes just reliability.  It is always less 
then unity.  It describes the degree to which the true relation M is biased downward by 
measurement error.   
We take var(M) as an estimate of the total variance (2

M + 2
M*)  

2
M + 2

M* = 93.25 = var(M) 
2

M* = 0.52 

2
M  = 93 

k  =  93/93.25 = 0.997  on average. 
 
Downward bias due to absolute error is rarely of any concern. 
 
3.  Evaluate structural model. 

Next we evaluate the straight line assumption, using the residual vs fit plot. 
  
No arches or bowls.   
The straight line model is acceptable. 

 
3.  Evaluate error model. 

We then evaluate the error model 
assumptions: homogeneous, normal, 
and independent errors.   

 
First assumption: homogeneous 
errors?  The residual vs fit plot shows 
that dispersion of the residuals was 
slightly less at large fitted than at small fitted values.  However, this is minor.  There 
is no convincing evidence of heterogeneity.   
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3.  Evaluate error model. 

Second assumption:  
Residuals normal? 
The QQ plot shows outliers. 
The normal curve overlay on the 
histogram identifies the same outliers. 
These outliers are far to the left, away 
from the mean value of zero.  They have 
considerable leverage on the parameter 
estimates. The outlier to the far left of 
the histogram has a leverage of 1, as 
measured by Cook’s D statistic. 
Values of 1 or above are of concern. 

 

 
Third assumption: Independent errors ? 

We have no information about temporal 
sequence, spatial arrangement of 
samples, or other common sources of 
non-independence.  If we had this 
information we would order the 
observations (and hence the residuals) by 
temporal sequence or by proximity.  The 
data are listed from small fish to large. 
To evaluate independence with respect to 
fish size we copy the residuals to an 
adjacent column, offset downward by one, so that neighbors are matched by row. The 
plot shows that residuals are independent. The plot shows no strong upward or downward 
trends. 
 
Fourth assumption: Errors sum to zero?  We do not need to check this because statistical 
packages produce parameter estimates where the residuals sum to zero. 
 
Conclusion: Errors are homogeneous with substantial deviation from normal distribution 
due to an outlier. 
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4. Partition df and SS according to model.   
 Calculate df according to rules 
 Obtain sums of squares from ANOVA table. 
 Neggs  =  + M ꞏ M +   
 Neggs  = 19.77 + 1.87ꞏ M +     
 11-1  =   1   + 9 
 4188.73 = 3260.86  + 927.87 
 
4. State the full (null) and reduced (alternative) model pair. 
  Full model  Ho:  M  = 1 
  Reduced (alternative) model HA:  M  > 1 
 
4. Calculate likelihood ratio for omnibus model. 
  LR = (927.87/4188.73)-11/2  =  3984   
  The slope of 1.87 kiloeggs/hectogram is 3984 times more likely than no relation. 
  A test against the 1:1 ratio is of more interest than a test against zero slope. 
 
5. State sample, population, and whether representative. 
 All cabezon fish ?   Probably not. 
 All fish from a finite (enumerable) population? Almost certainly not. 
 All fish that could have been collected when the collection was made. 
  This is a more realistic statement of the population. 
 Is the sample representative? 
  Random sample in this case has high cost, the sample was likely haphazard.  
  We’ll assume a haphazard sample is unbiased with respect to egg number  
   in relation to fish biomass 
  This is a more restrictive statement of the population than “all fish.” 
  This is a hypothetical or notional population. 
  So a hypothetical population, based on repeatable protocol, will be used. 
 All measurements that could have been made on 11 fish by this protocol?  
  This is more restrictive and more defensible.   
  It leaves aside the question of whether these fish are representative of other fish. 
 
5. Decide whether to use hypothesis testing. 

The research question is whether relation of fish egg number deviates from a 1:1 
relation with fish body size.  The null hypothesis (no relation of egg number to fish 
body mass) is hardly plausible for fish.  Rather than rejecting an implausible 
hypothesis, we will report parameter estimates with  95% confidence limits to 
evaluate  M  = 1. 

Source df SS 
Wt 1 3260.86 
Residual 9 927.87 

4188.73 
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10.  Evaluate parameters of biological interest. 

The purpose of this analysis was to estimate parameters in a situation where a relation 
was expected to exist based on the biology of fish.  Our research hypothesis was that 
egg number increases with body size, plausibly in 1:1 proportion with body size.  
Confidence limits are more informative than hypothesis tests against a single value. 
 
Compute confidence limits so as to include true value M  95% of time. 

 sb
2 = sy.x

2 x2 = (103.0962/932.55) = 0.1106 
 sy.x2 = MSresidual = SSresidual / df  = 927.89 / 9 = 103.096  (see step 4) 

x2 = (M- )2 = 932.55 
 sb  =  square root of sb

2  = sqrt(0.1106) =  0.3325 kiloeggs/hectogram 
 
 Lower limit  LL  =  ̂ M   t/2[]sb      

Upper limit   UL =  ̂ M  +  t/2[]sb 
 
 for 95% limits use t0.05/2[9]  because df = 9 
 
 MTB > invcdf .025; 
 SUBC> t 9. 
  .025   2.2622 
 
 MTB > invcdf .975; 
 SUBC> t 9. 
  .975    2.2622 
 
 Lower limit  =  1.87   (2.2622)(0.3325)  =  1.12 kiloeggs/hectogram 
 Upper limit   =  1.87 + (2.2622)(0.3325)  =  2.62 kiloeggs/hectogram 
 

From the residuals we judged that violation of the assumption of normality was 
potentially serious due to the leverage of an outlier. To evaluate the influence of the 
outlier we generate an empirical distribution of estimates of the slope parameter. First, 
the errors are randomly assigned to the fitted values, producing new ‘observed’ 
values.  These values were then regressed against the explanatory variable to obtain a 
randomized estimate of ̂ M.  This was repeated, to accumulate thousands of 

randomized estimates.  The confidence limits were then identified as the values of ̂ M  
that encompass 95% of the estimates from randomization. 
   
8000 randomizations.  200 (2.5%) were less than 1.28 kiloeggs/hectogram 
200 (2.5%) were greater than 2.48 kiloeggs/hectogram 
 
The confidence limits via randomization, which are free of assumptions except that of 
representative sample, were somewhat narrower than the confidence limits from the t-
distribution. The outlier had little effect on our measure of uncertainty, the confidence 
interval.   

 

Draw cdf, arrows going from p-value (vertical axis) 
over to curve and down to t statistic (horizontal axis). 

Some tables give both tails of the t-distribution 
e.g. Rohlf and Sokal give t0.05[9] = 2.622 
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10.  Evaluate parameters of biological interest. 
 
The confidence limits exclude the (implausible) null hypothesis of no relation.   
Of more interest is that the confidence limits exclude a 1:1 ratio of egg number to 
body mass.   The evidence supports an estimate greater than 1:1.  In other words 
disproportionately more eggs (per unit of body mass) in large than in small fish. 
 
We report the regression equation with confidence limits on M 
 Neggs  =  19.77  +  1.87 M    
 95% confidence limits of 1.28 to 2.48 kiloeggs/hectogram 
 
We report the evidence (LR = 4 x 103) along with a measure of uncertainty, the 
confidence limits from randomization.  

 
* * * 

Extra material 
 
Texts (e.g Sokal and Rohlf 2012) contain several methods for regression when the 
explanatory variable is measured with error. 
 
One of the most common is  

Reduced major axis regression   kiloEggs = 12.19 + 2.12*Mass 
 
Others are   

Major axis regression     kiloEggs  =  6.66 + 2.30*Mass 
Bartlett’s 3 group regression,   kiloEggs = 21.89 + 1.80*Mass 
Kendall’s robust regression.    kiloEggs = 26.68 + 1.68*Mass 

 
Some of these methods persist in widely used statistical packages and still appear in the 
published literature.  These methods address, in different ways, the problem of an 
explanatory regression variable measured with error.  These methods produce different 
(in some cases disturbingly different) estimates of the parameter of interest 
kiloeggs/hectogram of body mass. These methods were developed during a period of 
limited computationl power, in the context of null hypothesis testing rather than 
parameter estimates with the best statistical support, as from a likelihood ratio.  They 
were never intended for use in applied contexts, such as the calculations that underpin 
fisheries management.  
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GLM applied to regression where the explanatory variable is measured with error. 
 
Fish mercury example. 
Here is another example where the explanatory variable is measured with error. 
 
Methyl mercury is an environmental neurotoxin that results in loss of physical 
coordination, difficulty in speech, narrowing of the visual field, hearing impairment, 
blindness, and in extreme cases, death. Chronic exposure to mercury vapor was an 
occupational hazard of hatters in 17th century France and England (Mad hatter disease). 
Methyl mercury poisoning of fishing families in Minamata, Japan in the mid-20th century 
(Minamata disease) brought worldwide attention to the problem to bio-amplification of 
fat soluble food chain contaminants such as methyl mercurye (meHg) and DDT. 
Consumption of fish from hydro reservoirs is a continuing health risk in the 21st century, 
because impoundment of lakes results in fish with high levels of meHg.  Young mothers 
are strongly advised against consuming fish from reservoirs, as their milk contains high 
levels of meHg if they consume large number of fish from reservoirs.   
 
One link in the causal change from fish consumption to health risk is passage of meHg 
from food to the blood.  Daniel (1995 p 408) reports methyl mercury meHg in the blood 
(ng/g) relative to methyl Hg intake (µg/day).   Here are the data. 
 

 
Graph the relation of Hg in the blood to Hg intake. 
 
Construct a model to quantify the relation of Hg in the blood to Hg 
intake 
 
Report parameter estimates, with their units.   
 
Is downward bias due to measurement error a concern with this data? 
 
Evaluate the linearity assumption as a model of blood Hg to Hg 
consumption. 
 
Evaluate the homogeneity and normality assumptions for the error 
model. 
 

Obtain confidence limits for the estimate of the regression coefficient. 
 
Can you exclude the null hypothesis of no relation?  
 
Can you exclude the hypothesis of a 1:1 relation of Hg in the blood to Hg in food? 
 
Following impoundment of Cat Arm lake to a reservoir in Newfoundland in 1982, the 
meHg level in fish (trout and charr) rose from less than 0.2 μg/g fish to 0.5 μg/g fish 
(Brook trout) and 0.8 μg/g in Arctic charr (Environmental Pollution 101: 33-42).   
Calculate the intake of meHg at a consumption rate of 200 g/day of fish protein. The 
CFIA (Canadian Food Inspection Agency) standard for mercury in fish is 1 ppm (1μg/g) 
of fish. 

Hg 
intake 

Hg in 
whole 
blood 

g/day ng/g 
100 90 
200 120 
230 125 
410 290 
600 310 
550 290 
275 170 
580 375 
105 70 
250 105 
460 205 
650 480 


