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Model Based Statistics in Biology. 
Part IV.  The General Linear Model.  Multiple Explanatory Variables. 
Chapter 14.2   ANCOVA - Statistical Control  
 
 
 
 
 
 
 
 
 
 
 
  
 
 on chalk board 
 

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning is based on models, including 
statistical analysis based on models. 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to declare a decision. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable. 
ReCap (Ch 12) GLM with more than one regression variable (multiple regression) 
ReCap (Ch 13) GLM with more than one categorical variable (ANOVA). 
ReCap (Ch 14) ANCOVA with GLM - Comparing regression lines. 

 
 
 
 
 

 
Wrap-up.  
Statistical control improves analysis be removing the effects of a secondary variable, to 
achieve lower residual mean square and better analysis of the variable of interest. 
 In ANCOVA either the ratio scale or the nominal scale explanatory variable can be 
the control variable.  A ratio scale response variable (e.g. fish production from lakes) can 
be analyzed relative to a ratio scale explanatory variable (e.g. size of lake) controlled for 
a nominal scale variable (e.g. temperate versus tropical lakes).  Or a nominal scale 
explanatory variable (e.g. experimental treatment versus control) can be tested controlling 
for the effects of a ratio scale explanatory variable (e.g. metabolic rate of the animal).    
 Of these two possibilities, the more commonly encountered is that of a 
classification (nominal scale) explanatory variable, controlled for a ratio scale variable.  
An example of this was worked through today. 
 
 
 

ReCap.  Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9, 10, 11) 
ReCap Multiple Regression (Ch 12) 
ReCap Multiple Categorical Variables (Ch 13) 
14.1    Comparing Regression Lines 
14.2   Statistical Control 
14.3   Model Revision 
14.4    More than two explanatory variables (to be 
 written) 

CrwTb9_1.xls 
Ch14.xls 

Today:    Statistical control, with ANCOVA. 
Statistical control allows the effects of one variable to be removed,  
in order to arrive at a better analysis of the effects of another variable. 
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Introduction.   
ANCOVA is applied to data situations that have a mixture 
of both ratio and nominal scale explanatory variables.  We 
have already looked at ANCOVA where we use the 
interaction term to compare slope across a categorical 
variable.  Today we will look at another application of 
ANCOVA, where we use the regression variable to control 
for its effects in comparing means across a categorical 
varible. This analysis assumes homogeneous slopes, which 
we can evaluate with the interaction term.  
 
Data are from Table 9.1 in M.J. Crawley (1993) GLIM for 
Ecologists.  The data are reported on p 288 in Crawley 
(2003) Statistical Computing as fruit biomass of the plant 
Ipomopsis.  The Scarlet Gilia Ipomopsis aggregata subsp 
weberi is a rare and endangered plant endemic to the Park 
Mountain Range in Colorado and the Sierra Madre Range in 
Wyoming.  The biomass of the fruit is a measure of seed 
production by each plant. 
 
As reported in Crawley (2003) 40 plants were allocated to 
two treatments, grazed or not grazed by rabbits. 
 
The grazed plants were exposed to rabbits during the first 
two weeks of stem elongation, then protected from 
subsequent grazing. 
 
Seed production depends on plant size, which is measured 
as the diameter at the top of the root stock (in mm).  Root 
diameter was measured before exposure to grazing. 
 
At end of growing season, fruit biomass (Mfruit = mg dry wt) 
was recorded for each of the 40 plants. 
 
 
1. Construct model 
Verbal model.  
 
Rabbit grazing reduces fruit biomass and hence seed 
production, once we control for the relation of production to 
root size. 
 
 
 
  

Fruit (mg) Root (mm) Grazed 

59.77 6.225 n 

60.98 6.487 n 

14.73 4.919 n 

19.28 5.13 n 

34.25 5.417 n 

35.53 5.359 n 

87.73 7.614 n 

63.21 6.352 n 

24.25 4.975 n 

64.34 6.93 n 

52.92 6.248 n 

32.35 5.451 n 

53.61 6.013 n 

54.86 5.928 n 

64.81 6.264 n 

73.24 7.181 n 

80.64 7.001 n 

18.89 4.426 n 

75.49 7.302 n 

46.73 5.836 n 

80.31 8.988 y 

82.35 8.975 y 

105.1 9.844 y 

73.79 8.508 y 

50.08 7.354 y 

78.28 8.643 y 

41.48 7.916 y 

98.47 9.351 y 

40.15 7.066 y 

116.1 10.25 y 

38.94 6.958 y 

60.77 8.001 y 

84.37 9.039 y 

70.11 8.91 y 

14.95 6.106 y 

70.7 7.691 y 

71.01 8.515 y 

83.03 8.53 y 

52.26 8.158 y 

46.64 7.382 y 
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1. Construct model 
 
   Table of variables 

  
Root diameter is listed here as fixed because fruit production depends on plant size, 
hence root size.  Random units, such a blocks, are not listed. 
 
Graphical model. 
 
Fruit biomass in relation  
to grazing pressure.    Fruit biomass in relation to root diameter 
         
 

 
 
 
 
 
 
 
 
 
 
In the graph above, add a short horizontal line showing your visual estimate of the mean 
in the grazed and ungrazed plants. Comparing the means, we see that grazed plants (68 
mg) have a higher mean than ungrazed (51 mg). 
This unexpected result is due to the larger size of the grazed plants.  It becomes clear that 
plants were not randomly assigned to one of the two treatment groups, a standard practice 
in experimental design.   
 
In the graph showing root diameter, sketch a regression line, ignoring the groups.  Then 
sketch a regression line for each of the two groups.  We see that the lines look parallel for 
the two groups, but are not parallel to the line drawn through all the data.  Comparing the 
slopes we find that the overall slope is 𝛽መ root  = 14.0  mg/mm. 
The ANCOVA estimate of the slope (14 mg/mm) from both groups differs markedly 
from the slope estimate for each group: 24 mg/mm for ungrazed, 23.3 mg/mm for grazed. 
This arises from the lateral offset: ungrazed plants are smaller, hence to the left of the 
grazed plants in the graph.  This lateral offset reduces the overall slope from around 23 
mg/mm in each group to 14.0 mg/mm averaged across both groups. 
 
 

 Symbol Name Units Scale type Functional Random/  
    placement Fixed 
 
Mfruit Fruit mg dry weight ratio Response 
Root Root mm (diameter) ratio Explanatory Fixed 
Gr Grazed Y/N categorical Explanatory Fixed 

         _             * 
         _ 
      105+             * 
         _             * 
 fruit   _   * 
 biomass     *         3 
 (mg)    _   *         3 
       70+   *         3 
         _   5         * 
         _   3 
         _   *         3 
         _             3 
       35+   3 
         _ 
         _   3 
         _   *         * 
         _ 
           --+---------+----grazing  
          0.00 = no   1.00 = yes 

         _                                                      G 
         _                                           Grazed 
      105+                                                   G 
         _                                               G 
 fruit   _               Ungrazed         U 
 biomass                             U            G   2 
 (mg)    -                              U         GG  G 
       70+                             U   G      G  G 
         _                     2UU   U        G 
         _                  UU U 
         _                  U           GG     G 
         _                           GG      G 
       35+              3 
         _ 
         _      U   U U 
         _          U         G 
         _ 
           --------+---------+---------+---------+---------+--------root     
                 4.8       6.0       7.2       8.4       9.6 
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Graphical model. 
 
In the context of statistical control the covariate (Root) and the Root x Gr term are not of 
interest. However, if grazing alters the relation of fruit biomass to plant size, we might 
expect the regression slopes to differ. The text example makes no mention of hypotheses 
concerning the interaction term. 
 
Formal model 
 Write the formal model (GLM). 
 
  MFruit = 𝛽o + βRoot * Root  +   βGr * Gr   +   βRoot*Gr * Root * Gr   +  ε 
 
 
2.  Execute analysis. 
Place data in model format:  
 Column labelled Mfruit the response variable fruit biomass (mg dry wt)  
 Column labelled Grazed with explanatory variable Gr: grazed=Y,  ungrazed=N 
 Column labelled Root with explanatory variable Root = diameter 
 
Code the model statement in a statistical package according to the GLM 
  MFruit    =  βo  +  βRootꞏRoot  +  βGrꞏGr  +  βRootꞏGrꞏ Rootꞏ Gr  +  ε 
 
 
 
Fits and residuals are calculated in any of several ways:  
 -model statement output of fitted values and residuals (as above), or 
 -parameters reported by GLM routine, or 
 -direct calculation of parameters. 
 
The mean for grazed and ungrazed is expressed as a deviation from 𝛽መo = 59.4 mg 

   𝛽መ  𝛽መீ ൌ ቊ
meanሺ𝑀Grൌnoሻ    ൌ         59.41   –     8.53  ൌ  50.88 mg
mean൫𝐻Grൌyes൯   ൌ         59.41        8.53  ൌ  67.94 mg 

 

The slope parameter for grazed and ungrazed together is  𝛽መ root  = 14.0  mg/mm 

 
 
 
 
 
 
 
 
The regression equations for each group differ substantially from the overall regression. 
 MGr=No =  –94.367  + 23.996 Root 
 MGr=Yes =  –125.28  + 23.254 Root 
 
 
 

MTB > glm   'Mfruit' = 'root'   'Gr'     'root'*'Gr'; 
SUBC> covariate  'root'. 

MTB > regress 'fruit' 1 'root'. 
  
 The regression equation is 
 fruit = - 41.3 + 14.0 root 
  
 Predictor       Coef       Stdev    t-ratio        p 
 Constant      -41.31       10.73      -3.85    0.000 
 root          14.026       1.464       9.58    0.000 

Above each term sketch a graph 
showing data dots with means or lines 
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3.  Evaluate the model     
Plot residuals versus fits. 

 
Straight line assumption 

questionable.  Residual plot 
shows same pattern as response 
variable 

Error model. 
 If n small, evaluate assumptions 

for p-values from chisquare (t, 
F) distributions. 
 
n = 40, so even substantial 
deviations will have little distorting effect on calculation of parameter estimates and p-
values. 
 
a. Homogeneous?  No 
Residuals show a spindle shape: high dispersion at the center, tapering to less 
dispersion at the extremes.  Upon closer inspection we see that this is due to two 
diagonally oriented clusters of data points, one above the other.   
 
b. Normal?  
The residuals look normal plotted as a 
histogram and in QQ plot 
 
c. Independent?  
Each residual plotted against its neighbor. 

No evidence of non-independence. 
 

d. Sum(res) = 0?  Yes 
 

The residuals are clearly not homogeneous, but this does not appear to produce values 
that can have undue influence on accurate estimates of the variable of interest fruit 
biomass. Estimates of Type I error (P-value) may be robust.  Parameter estimates may not 
be accurate. 
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4. Partition df and SS according to the model.  
 M   =   βo   + βrootRoot + βGrGr       + βRoot x Gr Rootꞏ Gr + res 
 40–1  =             1        +       1        +      1                +        39 
 23752.2 =  16800.4  5266.7      4.6    +    1680.5 

  
 Calculate likelihood ratio for overall (omnibus) model. 
 1- R2 = (1680/23752.2) = 0.07075 LR = (1-R2)-40/2 = 2.7 x 1022  

 
5. State population and whether the data are a representative sample.  
 The principles of sound experimental design are randomization, replication, and local 

control.  In this case we have acceptable replication—20 grazed and 20 ungrazed 
plants. Randomization and local control were not achieved. Grazed plants were larger 
at the outset. This introduces an uncontrolled source of variance that is confounded 
with the presence/absence of grazing.  The reason for larger plants in the group was 
not reported in the text example. 
The sample of 40 plants will be taken as representative of a population based on 
multiple repeats of the same experimental protocol, keeping in mind the limitations of 
that protocol. 
 

5. Justify mode of inference. 
For ANCOVA with statistical control by the covariate, we normally assume that the 
slopes are homogeneous and that the interaction term is negligible.   We will use 
likelihood ratios to evaluate this assumption.  Rather than the formalism of hypothesis 
testing we will focus measures of evidence and on an accurate estimate of the 
difference in fruit biomass, accompanied by a measure of uncertainty.     
 

6.  State hypothesis pairs and likelihood ratios. 
 First, a check on whether slopes are parallel. 

   βroot*Gr=0 ≠ βroot*Gr=1   (slope not parallel) 
   βroot*Gr=0 = βroot*Gr=1  (slopes parallel) 
 
Next the factor of interest, Grazing or not. 
   βGr=0 > βGr=1    (Grazing reduces fruit biomass) 
   βGr=0 < βroot*Gr=1     (Grazing does not reduce fruit biomass) 
 

7. ANOVA 
 
 
 
 
 
 
 
 
 Root is listed first, which controls for this covariate in the sequential analysis. 
 The default ANOVA table in this package is the adjusted SS.   

 MTB > glm 'seed' = 'root' 'grazing' 'root'*'grazing'; 
 SUBC> covariate 'root'. 
  
 Analysis of Variance for seed    
  
 Source         DF     Seq SS     Adj SS     Adj MS       F      P 
 root            1    16800.4    18791.6    18791.6  402.57  0.000 
 grazing         1     5266.7      157.1      157.1    3.37  0.075 
 grazing*root    1        4.6        4.6        4.6    0.10  0.754 
 Error          36     1680.5     1680.5       46.7 
 Total          39    23752.2   
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7. ANOVA 
 The default in the R package is the sequential SS.   
 
 

 First, the interaction term. 
LR =( (4.6/1680.5)+1)40/2 = 1.1 from sums of squares 
LR = ((1/36)(0.10)+1)40/2 = 1.1 from F and degrees of freedom 

There is no evidence of an interactive effect. The slopes are parallel. 
 
Next, the grazing effect.  

LR =( (5266.7/1680.5)+1)40/2 = 2.1 x 10-12 from sums of squares 
 There is strong evidence for a grazing effect in this analysis. 
 Looking at the adjusted SS table we see there is inadequate evidence. 
  LR =( (3.37/1680.5)+1)40/2 = 6 times more likely than not, from sums of squares 

We are in the uncomfortable position of results that depend on two different ways of 
controlling for size effects.  
 

8.  When assumptions are not met, decide whether to re-compute likelihood ratio. 
Likelihood ratios and the F-statistics calculated from them depend on the error model. 
They also depend on the assumptions supporting either a sequential or adjusted 
analysis of variance, which in this case give different results. 
We already have seen that the residuals plotted against the regression variable show a 
pattern.  As we saw when we sketched the graphical model, the slope of the straight 
line is biased downward by the predominance of ungrazed plants at small root sizes, 
and the predominance of grazed plants at large root sizes.  Rather than revising the 
statistical model, we can check our results against a completely different tactic, that of 
taking the data over the limited range of root sizes where both grazed and ungrazed 
plants occur.  This occurs in the middle of the graph, at root sizes from 6.225 to 7.69 
mm.  Instead of revising the statistical model, we control for root size by executing the 
same ANCOVA model with balanced rather than unbalanced data.   
 

  

SeedMod<-lm(Mass~RootDiameter+Grazed+Root*Grazed,data=CrwTb9_1) 
anova(SeedMod) 
   SS  MS  Fratio 
Root  1 16800.4 16800.4 359.912 < 2.2e-16 
Grazed 1 5266.7 5266.7 112.8286 1.21E-12 
Root:Grazed 1 4.6  4.6  0.0994 0.7544 
Residuals 36 1680.5 46.7   
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9.  Summary of results  
 

            Df Sum Sq Mean Sq  F value    Pr(>F)     
Root         1  850.7   850.7  29.7567 0.0001465 *** 
Grazed       1 3603.6  3603.6 126.0551 1.011e-07 *** 
Root:Grazed  1  159.9   159.9   5.5919 0.0357427 *   
Residuals   12  343.1    28.6 

 
LR = ((1/12)(5.59)+1)40/2 = 2097 from F and degrees of freedom 

 
With balanced data we have evidence for a difference in regression lines for grazed 
and ungrazed plants.  
 
For the balanced data set, the graph of the residuals from the regression shows a 
stronger positive relation in grazed than in ungrazed plants. This can be attributed to 
large plants having greater capacity to withstand grazing than smaller plants. 
 

                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)     -57.177     23.778  -2.405   0.033234 
Root             18.563      3.508   5.291   0.000191  
Grazed yes     -124.799     39.082  -3.193   0.007729  
Root:Grazed yes  13.237      5.598   2.365   0.035743  

 
The slope estimate for ungrazed is 18.5 mg/mm 
The slope estimate for grazed is 18.5 + 13.2 = 31.7 mg/mm. 
 
The difference in fruit size is evident in the graph of the residuals from regression for 
the balanced data.  

 
The residuals for balanced data show far less pattern than those for unbalanced data. 
The residuals show clear separation of grazed and ungrazed plants, with far low fruit 
biomass for grazed than ungrazed plants.  
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10.  Conclusion  
When slopes are homogeneous, a convenient way to compare effects of grazed and 
ungrazed plants is to use the points at which x = zero (the y-intercepts). When the slopes 
are heterogeneous, as with the balanced data, divergence in slopes amplifies the 
difference in y-intercepts. 
When slopes are heterogeneious, an alternative to comparing the y-intercepts is to 
compare the residuals from regression for grazed and ungrazed plants. For the balanced 
data, the residuals from regression on root diameter were negative for grazed, positive for 
ungrazed.  

 
Ungrazed  average = 11.04 mg    Grazed average = -40.5 mg 
Ungrazed - Grazed = -29.44 mg 

The reduction due to grazing is substantial, compared to the average biomass of all 
ungrazed plots = 69.4 mg 

-29/69      # = -42 %   Balanced data (Residuals from regression) 
-36/69      # = -52 %   Unbalanced data (Comparison of y-intercepts) 

 
The parameter estimates differ by a ratio of 36/29 = 1.24.  The reduction in fruit biomass 
estimated from unbalanced data is high, compared to that estimated from balanced data.  
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Estimate of grazing effect based on comparison of Y-intercepts, unbalanced data.  
 The slopes are parallel.  βroot*Gr=0 = βroot*Gr=1    
 Because of the offset, we report the rate in each group, not the overall rate. 

 
9. Analysis of parameters of biological interest. 
 
 
 

 
When root size is not taken into account, the fruit biomass appears to be less for ungrazed 
than for grazed. 

 
Ungrazed    50.88 mg 
Grazed  –67.94 mg 
Difference  –17.06 mg 

 
This is because initially the grazed plants were larger than the ungrazed plants. 

 
To compare grazed vs ungrazed, controlled for size, we calculate the vertical separation 
between the two regression lines.  A convenient point at which to do this is the point at 
which x = zero (the y-intercepts). 
 
 
 
 
 
 
 
 

 
The intercept for grazed lies below that for ungrazed. 
The vertical separation between the two regression intercepts is: 

 
Grazed            –127.820) mg 
Ungrazed             – ( –91.729  mg 
Difference                 – 36.091  mg 

 
By this accounting, the fruit biomass for grazed plants was less by 36 mg. This 
accounting is based on a regression line extrapolated beyond the data, from unbalanced 
data that distorts the regression.  The regression slope for all data differs from the 
regression slope in each group, which are nearly the same.     
 
  

    grazing       N     MEAN   MEDIAN   TRMEAN    STDEV   SEMEAN 
 fruit           0       20    50.88    54.24    50.84    21.76     4.87 
                 1       20    67.94    70.85    68.21    24.97     5.58 

𝛼ො  =        βo    –  βroot    *      mean(X) 
 

𝛼ොGr=no   =    Mean(MGr=no)   – βroot   * Mean(rootGR=no)  
  =  50.88    – 23.6    *      6.053) =    –91.729 mg 

 
𝛼ොGr=yes   =    Mean(MGr=Yes)   – βroot   * Mean(rootGR=Yes)  
  =  67.94    – 23.6   *      8.309)  =  –127.82 mg 
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Estimate of grazing effect based on residuals from regression in each group. 
When grazing effects are controlled by sequential analysis, the covariate appears first, 
with grazing second.  This is equivalent to taking the residuals from the covariate, then 
comparing the means of the residuals from the two groups. The analysis above used 
sequential sums of square. 
The use of sequential SS suggests a different approach, which is to estimate the 
regression in each group, calculate the residuals from that regression in each group, and 
then compare the residuals, which are now controlled for initial size.   
The tactic fails for all data (ANCOVA on unbalanced design)  
 
          Df Sum Sq Mean Sq F value Pr(>F) 
Grazed     1    0.0   0.000       0      1 
Residuals 38 1680.5  44.222  

 
This tactic eliminates all of the differences between the two groups. In retrospect the 
regression equation in each group estimates 4 parameters that together eliminate the 
intercept differences as well as the slope effects. 


