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Model Based Statistics in Biology.    
Part V.  The Generalized  Linear Model. 
Chapter 17.1   Poisson Regression 
 
 
 
 
 
 
 
 
 
 

 
     on chalk board 

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning 
ReCap Part II (Chapters 5,6,7)  Hypothesis testing and estimation 
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory 
variable. 
ReCap (Ch 12,13,14) GLM with more than one explanatory variable 
ReCap (Ch 15) GLM review 
ReCap (Ch 16) The generalized linear model. 
ReCap (Ch 17) 
Many of the analyses undertaken in biology are concerned with frequencies. 
 
Frequencies are also analyzed by the Generalized Linear Model, which compares 
observed to expected (model) values.  
 
We use the Analysis of Deviance to calculate the improvement in fit, the 
Likelihood  ratio, and the likelihood ratio statistic.  
 
 
Wrap-up. . 
 
The example today demonstrated Poisson regression.  The response variable has a 
variance that increases with the mean.  The explanatory variable is numeric.  The 
link between the response and explanatory variable is logarithmic, hence the 
analysis considers percent change in the response variable with change in the 
explanatory variable.  
  

ReCap.   Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 
ReCap    Part III (Ch 9, 10, 11), Part IV (Ch 12, 13, 14) 
17  Poisson Response Variables 
17.1    Poisson Regression 
17.2    Single Categorical Explanatory Variable 
   (Log-linear Model) 
17.3    Single Categorical Explanatory Variable  
    (Sensitivity Analysis) 
17.4    Two or More Categorical Explanatory Variables 
17.5    Poisson  ANCOVA 
17.6   Model Revision 

Today:   Poisson Regression.   
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Poisson  Regression. 
Example: Death by Horsekick 
 
The classic example of Poisson data is the number of deaths by horse kick, for 
each of 16 corps in the Prussian army, from 1875 to 1894.  The data were 
assembled and published by Ladislaus Bortkiewicz in his book, The Law of Small 
Numbers (1898).  Bortkiewicz was an economist and statistician who taught at 
Berlin University (1901–1931). Bortkiewicz showed that the horsekick data fit a 
Poisson distribution, which was introduced 1837 by Siméon Poisson in Récherches 
sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile. 
 
The unit of analysis is a single army corps in a single year.  The number of deaths 
per year in a single corps ranged from 0 to 3.  The deaths occurred because most of 
the soldiers knew nothing about horses. They were conscripts from cities and did 
not know about why one does not stand behind a horse. The data are Poisson 
counts because we do not know the number of trials (kicks) that resulted in death. 
 
With this data we ask: Was there any trend in the number of deaths? 
Poisson regression as a special case of the generalized linear model. 
 
1.  Construct Model   
Verbal model.  
Does number of deaths by horsekick in 
Guard corps show a trend from 1875 to 
1894? 
 
Graphical model 
If asked to draw a line on the graph, many 
people might draw a slight downward 
trend.  How strong is the evidence for such 
a trend? 
 
1.  Construct Model   
Response variable: Deaths/year 
Explanatory variable: a numeric variable, Year. 
Choice of error structure.  The data consist of counts in definable units, a single 

army corps over a year.  This points at one of several probability models for 
discrete variables.  One such is the Poisson distribution for rare and random 
events. Another is the negative binomial distribution for clustered or contagious 
events, such as disease cases.  We will start with the Poisson distribution.  Then 
we will use a residual fit plot to check this choice.  
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 1.  Construct Model   
Write the formal model using GzLM notation. 
 Deaths = 𝜂  +  ε 

𝜂 ൌ 𝛽௢ ൅ 𝛽௒௥  𝑌𝑟 This is called the linear predictor 
ε   This is the raw (unstandardized) residual. 
 For model checking, we will use a standardized residual. 

 This model shows an identity link between the response variable and the 
linear predictor.  With this model 𝛽௒௥ is the change in number of deaths per 
year.  Looking at the data, this will mean fractional deaths per years.  
Alternatively, we can quantify the change as % per year.    

 The model is now written: 
 Deaths = 𝑒ఎ  +  ε 

𝛽௒௥ now quantifies change as %/year rather than numbers/year. 
This model estimates multiplicative effects on the data scale (counts).   
The model snows a log link of the response variable to the linear predictor η. 

Which link?    
We can use either of these two links with the Poison distribution, 

depending on whether we want to look at additive changes in the response 
variable, or percent change.  With count data we usually work with 
multiplicative changes.  We report changes as percentages rather than as 
change in fractional number of units.  
     The log link is the canonical link for the Poisson distribution because it is 
additive on the scale given by the link.  Canonical links have desirable 
statistical properties compared to alternatives.  For Poisson error, the 
estimation routine does not always converge to an estimate when using the 
identity link. 

 
Rewrite the formal model in standard 3 part format. 
Distribution 𝐷𝑒𝑎𝑡ℎ𝑠 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ሻ     λ is the mean count 
Link 𝐷𝑒𝑎𝑡ℎ𝑠 ൌ 𝑒ఎ This is the log link 
Linear predictor  𝜂 ൌ 𝛽௢ ൅ 𝛽௒௥ 𝑌𝑟   
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2.  Execute analysis.  
Place data in model format: 
Column labeled Count,  
 with response variable # of deaths in each year. 
Column labeled Year, the explanatory variable 
 

Here is the  SAS input file - > 
 
The numbers are for Guard Corp.   
In the next section of this chapter we will compare 
death rates among different corps. 
 
 
 
 
 
2.  Execute analysis. 
We use the model statement to code the model in our 
statistical package 
 

𝐷𝑒𝑎𝑡ℎ𝑠 ൌ 𝑒  ఉ೚ାఉೊೝ ௒௥ 
 
   
 
 
  

Data Horsekick; 
 Input Year 1-4 Deaths 7  
 Duty $ 10 Corps $ 12-16; 
cards; 
1875  0  A guard 
1876  2  A guard 
1877  2  A guard 
1878  1  A guard 
1879  0  A guard 
1880  0  A guard 
1881  1  A guard 
1882  1  A guard 
1883  0  A guard 
1884  3  A guard 
1885  0  A guard 
1886  2  A guard 
1887  1  A guard 
1888  0  A guard 
1889  0  A guard 
1890  1  A guard 
1891  0  A guard 
1892  1  A guard 
1893  0  A guard 
1894  1  A guard 

Proc Genmod; 
  Model Deaths = Year/ 
  Link=log dist=poisson type1 type3; 
  Obstats; 

PROC PLOT data=; plot res*pred/vref=0; SAS 

PoissonMod <- glm(formula = Deaths ~ Year,  
  family = poisson(link = log), data = Horsekick) 
anova(PoissonMod) R 
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3. Evaluate model 
A1.  Straight line assumption . 
While there is pattern in the residuals, 
the pattern is not a curve (no bowls or 
arches).  So the straight line 
assumption on a log scale is 
acceptable. 
 
A2.  Distributional assumptions. 
Homogeneity.  Judged acceptable 
 
Normal.  The zero observations, 
stacked on the left side of the plot 
show deviation from the normal line.  
The stack centers on the normal line, 
and so the deviations are judged not 
serious. 

Independent.  We know the temporal 
sequence of the observations so we check 
this assumption.  Assumption judged 
acceptable – no trends up or down across 
the entire graph. 

 
4. What is the evidence? 
For the Generalized Linear Model we calculate the change in deviance ∆Dev due 
to a term in the model, rather than the Sum of Squares for each term in the model. 
With 20 observations, we have 19 df after fitting the intercept  𝛽௢ and 18 df after 
fitting the rate of change parameter 𝛽௒௥. 
 The goodness of fit of the data to the full (null) model is  Dev = 22.0500 
 The fit of the data to the reduced model is Dev = 21.4387 
 The improvement due to the regression term is ∆Dev =  0.61 
 
Here are the df and deviance calculations, aligned with the model. 
 
 

  Deaths = exp(𝛽௢ + 𝛽௒௥Yr ) +     ϵ 
residual df     19  =   1 +   18  
Deviance 22.05  =         0.61 + 21.4387 
∆Deviance            0.61 
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4. What is the evidence? 
The results are displayed in an analysis of deviance (ANODEV) table. 
 
 
 
 
 

Reduced model   𝛽௢ ൅ 𝛽௒௘௔௥  hence:  o Year Year
Deaths e constant

  
   

Full model    𝛽௢   hence:  oDeaths e constant


   
 

𝐿𝑅 ൌ  
௅ ሺ ఉ೚  ,   ఉೊ೐ೌೝ |஽௔௧௔ሻ

௅ ሺఉ೚   |஽௔௧௔ ሻ
  

 
  ΔDeviance = -2 ln LR       LR = e0.61/2 = 1.36 
 
  There is no evidence of change in death rate (%/year) in this data. 
 
5.  Analytic Mode. 
 Our measure of evidence, the likelihood ratio, can be use in any of several 

analytic modes.  
 “Bayesian”?  No. We have no prior information to set up a  
  defensible prior probability. 
 Frequentist? No.  The measurement protocols are definitely not repeatable.   
 Decision theoretic?    No.  We have no criteria for setting Type I error.   
 Evidentialist? Yes.  We can infer from the data to a model validated by model 

checking.   
  

Source   df Deviance = G2 ∆Dev  Pr > ChiSq 
 Intercept    1 22.0500 
 Year     1 21.4387  0.61  0.4343 
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 This is an observational study 
with many sources of 
uncontrolled variability. We 
will avoid using probabilities 
(p-values) as evidence.  We 
will avoid declaring decisions 
against a fixed Type I error 
rate. 
 
Tversky and Kahnemann 
(1971) noted that p-values on 
data with uncontrolled 
variability tend to support 
belief in what they called the 
“law of small numbers,” the 
judgmental bias that occurs 
when it is assumed that the 
characteristics of a population 
can be estimated from a small 
number of observations or data 
points. 
 
 

 
10.  Science conclusion. Analysis of parameters of biological interest.  
The parameter describing rate of change from year to year was small in magnitude 
𝛽መ௒௘௔௥ ൌ െ0.0341 %/year.  The estimate was no more likely than not, 𝛽௒௘௔௥ ൌ 0. 
The rate parameter provides no additional information beyond the mean number of 
deaths over 20 years.  Mean(Deaths/year)  = 16 deaths / 20 years = 0.8 deaths/year 
Deaths are not decimal numbers so alternatively, we re-express the mean as an 
average time per event, 1.25 years/death. 
 


