
1

Laboratory #4.
Probability Values by Randomization.

In the sciences the classical approach to measurement variability in research results has been

frequentist statistics. The frequentist approach addresses this uncertainty by asking: How often
could a sample statistic, such as a mean, have been obtained by chance from a population
consisting of many runs of the same study? To answer this question we compare the observed
statistic with the distribution of results due only to chance. In the Fisher version of inferential
statistics we make a judgement from a p-value computed from the distribution of outcomes under
the null hypothesis, that results are due only to chance. In the Neyman-Pearson version of
inferential statistics we make a formal decision against a pre-set criterion (e.g. 5%) using the p-
value. The statistical distributions that are commonly used to calculate these p-values are the F, t,
and χ2 distributions.

We cannot always assume that one of these distributions will represent the distribution of
our result under the null hypothesis. The assumptions for these distributions (errors are normal
and homogeneous) may not hold for our data. Or we may have a statistic for which the statistical
distribution is unknown.

In these cases we can always evaluate our statistic by constructing a frequency distribution
of outcomes based on repeated sampling of outcomes when the null hypothesis has been made
true by random sampling of the data. This approach to statistical inference is called a
randomization test. It requires no assumptions about the deviations of the data from the model.
It will work for any statistic you might devise, or any set of data you might encounter. Strictly
speaking it applies only to the batch of data at hand. Inference beyond the batch depends on
whether the batch is a representative sample from some larger population to which we wish to
infer.

Table 4.1. Generic recipe for randomization test
1. Compute a statistic (observed outcome)
2. Make the null hypothesis true by randomizing the data
3. Re-compute the statistic to obtain an outcome when the null hypothesis is true
4. Repeat this many times
5. Construct a frequency distribution of outcomes when the null hypothesis is true
6. Compare the observed outcome to the distribution of outcomes, in order to calculate a
probability value.

The goal of this laboratory is to demonstrate how to obtain the probability of a statistic via
randomization. The examples will be simple: tests of whether two means differ to a statistically
significant degree.

Once you have completed the lab and write-up, you should have
 - an understanding of the logic of hypothesis testing, based on a randomization example
 - a working knowledge of the mechanics of computing p-values by randomization

The data for his lab are on the course website:
https://github.com/DavidCSchneider/StatisticalScience/tree/main/Data/Labs

DaphniaAges.txt Box 9.5 in Sokal and Rohlf 1995
LitterSize.txt Box 13.12 in Sokal and Rohlf 2012

2

In a spreadsheet, place names at top of a column
In the ASCII (text) file copy both columns.
Paste into spreadsheet.
This works well if the columns are separated by a tab, or a
single space, or a comma

Laboratory #4. Randomization tests

To begin, look again at Table 4.1 and then draw a flow diagram (boxes and arrows) showing
how to do a randomization test.

Computing the p-value by randomization can be done in a spreadsheet. Because a
spreadsheet by itself has limited statistical capacity, inference by randomization will be
demonstrated using statistical packages, so that you become familiar in using these.

The randomization test will be demonstrated with data from Box 9.5 of Sokal and Rohlf
(1995). The research question:

Does the average age at beginning of reproduction in one strain of Daphnia longispina differ
from that of another strain?

To begin, -Download the Daphnia data file from the course website to your desktop.
 -Double click on the file to open it and look at the data.
How many rows of data do you see? ______

Next we import the data into the statistical package.
This lab can be done in a spreadsheet (excel), in a code only package (R),
or in a package with spreadsheet and code (Minitab). Your choice for this lab is ___________
With most statistical packages we can simply select the data by highlighting it, copy it, paste it
into the spreadsheet in the package, and type in the name of each column: Strain1 Strain2.

Here is pseudocode (applies to any package) for defining data using copy and paste
 Define Data

 from file

If you are using spreadsheet or a package do that now and skip the R-code.

.

Open file that has data, usually on the desktop.
Use mouse to highlight the data
Copy the highlighted data
Paste onto the stat package spreadsheet interface or datafile
Name the columns

3

highlight data columns and copy to clipboard
then in R issue commands
daphnia <- read.delim("clipboard", sep=” “,
header=FALSE)
names(daphnia) <-c("Strain1","Strain2")

Laboratory #4. Randomization tests
Copy and paste can be done in R.

R-code for columns separated by a tab. The space between “ “ is a tab.

Define Data
from file

Until recently R-studio allowed Import Dataset for text
files. R-studio now only allows import from CSV or
proprietary software (Excel, SPSS, SAS, Stata).

In order to use Import Dataset in R-studio you will have to
copy the data from the text file to a csv or excel file, then
import it.

In R we can use code to browse for and import any data file, including text files.

 Define Data
 from file

This is a little risky, because of the problem of separators. But it usually works.
Names for each column of data (vector) do not appear in this text file, These are added in R.

Having defined the data, we calculate the difference in means between Strain1 and Strain2

Here is pseudocode for calculating difference of means of two variables (columns)
Pseudocode applies to any package or spreadsheet.

Calculate statistic

 AvDiff

Now that you have looked at the pseudocode, use your statistical package to compute the
difference in mean ages of the two strains of Daphnia..

Calculate statistic AvDiff in excel

A10 =AVERAGE(A2:A8)

A12 =A10-B10

A15 =MEAN(A2:B10)

Daphnia <-read.table(file.choose(),nrows=7)
names(Daphnia) <-c("Strain1","Strain2")

 Select a location to place AvDiff
 Define the function AvDiff = mean(Y1) – mean(Y2).
 Calculate AvDiff = mean(Y1) – mean(Y2).

4

k1 <- mean(Daphnia$Strain1) #Filename$Variablename
k2 <- mean(Daphnia$Strain2)
k3 <- k1 - k2
k3

MTB > let k1 = mean(c1)
MTB > let k2 = mean(c2)
MTB > let k3 = k1 - k2
MTB > print k1 k2 k3
K1 7.51429
K2 7.55714
K3 -0.0428576

Laboratory #4. Randomization tests
To use code in Minitab, find out how to force the package to display the commands.

Here are the command lines, from Minitab

Calculate statistic
 AvDiff

in Minitab

Here is the calculation in R.

Calculate statistic
 AvDiff in R

Now, report the difference (which will be in units of days) to 3 significant figures; then re-write
it in units of hours.
 AvDiff = _________ days AvDiff = _________ hours
Laboratory #4. Randomization tests
Could this difference be merely a matter of chance? To find out we randomize the data, to
compute the difference in time to reproduction due to chance variation.

Pseudocode for calculating random difference of means (applies to any package)

Sample to RV1, RV2

Define RanDiff

 Calculate RanDiff

Now that you have looked at the pseudocode, compute a random difference in mean age between
the two strains of Daphnia.

Here is a typical code sequence in a menu-based package, Minitab
Stack to single column

Sample to RV1, RV2

 Calculate and

Store RanDiff

Place RanDiff
in a column (vector)

Laboratory #4. Randomization tests

 Stack variables Y1 and Y2 into variable Y3
 Sample 7 values from variable Y3 to random variable RV1
 Sample 7 values from variable Y3 to random variable RV2
 Select a location to place RanDiff
 Define the statistic RanDiff = mean(RV1) – mean(RV2).
 Calculate RanDiff = mean(RV1) – mean(RV2).

MTB > stack c1 c2 c3
MTB > sample 7 c3 c4;
SUBC> replace.
MTB > sample 7 c3 c5;
SUBC> replace.
MTB > let k1 = mean(c4)
MTB > let k2 = mean(c5)
MTB > let c8(1) = mean(c4) - mean(c5)
MTB > print k1 k2 C8
 K1 7.48571 <---your values may differ
 K2 7.5857 <---
 C8 -0.1 <---
MTB > stack c8 c6

5

Y_all<-c(Daphnia$Strain1,Daphnia$Strain2)
RV1<-sample(Y_all,size=7,replace=TRUE)
RV2<-sample(Y_all,size=7,replace=TRUE))
mean(RV1)
mean(RV2)
RanDif<-mean(RV1) - mean(RV2)
RanDif
RDvector<-(RanDif)
RDvector

Y_all<-c(Daphnia$Strain1,Daphnia$Strain2)

RV1<-sample(Y_all,size=7,replace=TRUE)

RV2<-sample(use copy paste from above to fill this in)

RanDiff <- mean(RV1) – mean(RV2)

RDvector <- Randiff

The random difference in time to reproduction, based on the randomization in Minitab, was 0.1
day, or about 2 hours earlier out of 7.5 days. This value is the difference in time to reproduction
that can arise due to chance sampling of the data

Here is the same sequence in R-code. Run each step and display the result.

Stack to single col

Sample to RV1

Sample to RV2

Calculate RanDiff

Store result

 To obtain a random difference in means in R, assemble the code in the R-script window
 To make sure it is correct and to undertand what you are doing, Run the code line by line.

Stack to single col
Sample to RV1, RV2

Calculate RanDiff

Store RanDiff
in a column

Your random difference will differ from the one shown in the Minitab box because it is a new
sample of the data.

To obtain a random difference in a spreadsheet we use a random number generator to assign a
random rank to each value of Age, then use the random rank to choose values to place in the
random vectors RV1 and RV2

D2 =RANK(C2,C$2:C$15,0)
Use cursor to copy downward from D2
F2 =RAND()
Use cursor to copy downward from F2
G2 =RANK(F2,F$2:F$15,0)
Use cursor to copy downward from G2
And now, a mysterious function to place a
random value from Age (col 2) to RV1
H2 =INDEX(C2:C15,G2)
Use cursor to copy downward from H2
I2 =INDEX(C2:C15,G9)
Use cursor to copy downward from I2
Calculate means and RanDiff

6

RV1<-sample(Y_all,7,TRUE)
RV2<-sample(Y_all,7,TRUE)
RanDif<-mean(RV1) - mean(RV2)
RDvector<-c(RanDif,RDvector) #stack values in RDvector
RDvector

RDvector<-c(replicate(2,
 (mean(sample(Y_all,7,TRUE))
 -mean(sample(Y_all,7,TRUE)))))

on Microsoft Windows (adjust the path to R.exe as
needed)
"C:\Program Files\R\R-2.13.1\bin\R.exe" CMD BATCH
 --vanilla --slave "c:\my projects\my_script.R"

Laboratory #4. Randomization tests

In order to assign a probability to the observed difference AvDiff we need to accumulate many
values of RanDiff. To accumulate chance differences, we define a sequence of commands that
we can execute repeatedly. Once this sequence works, you can execute this batch again and
again. Here is a shortened version of the sequence of commands to add a random difference to a
column called RDvector.

Add RanDiff
 to column

Now, in your package, run your batch several times. As you execute this batch of commands
repeatedly in your package, you should see the random differences accumulate in the appropriate
column. In R, you can add a line of code to the batch file: hist(RDvector,breaks=11)to watch
the histogram develop.

Running code step by step, then running a batch of files repeatedly gives us a ‘hands on’ sense of
what a randomization test is doing. However, executing a batch repeatedly is impractical in most
applications of randomization, which require thousands of runs. So the next step is to create a
macro where we can specify the number of runs of the batch file.

Pseudocode for running a macro to accumulate random differences (applies to any package)

Define macro

 Execute macro

Macro routines are available in excel and in menu-based programs. In Minitab, it is easier to run
your batch of code 100 times than to set up the Macro. In SAS a randomization Macro requires a
page of code . See: Behavior Research Methods, Instruments, & Computers 25:406-409.
Macro routines in R are not pretty.

In R we can combine commands to a single command and specify the number of runs

Here is the R batch file combined to a single command line, with 2 runs.
 Define and

Execute macro

In today’s lab we are going to restrain ourselves and accumulate only 100 runs, so that we can
see what we are doing when we calculate a p-value. It only takes a minute to run your batch file
100 times. In R you can run the single code line shown above and specify 100 runs.

Define a sequence of commands
Place into a file (called a macro)
Execute the file a specified number of times.

7

Laboratory #4. Randomization tests
Whew! We’re almost done. We have a column of random differences in the means of the age
of first reproduction in Strain1 compared to Strain2 We made the null hypothesis true by
random sampling and now we have the distribution of outcomes (differences of means) when
the null hypothesis --no difference-- is true.

The next step is to display the distribution. All statistical packages have a readily available
routine for displaying a histogram for a column of numbers (differences in means, in this case).

Pseudocode for creating and displaying a histogram

Display

 histogram

Here is Minitab code to generate the histogram (which will need labels)
Display

 histogram

Here is the Rcode for a well-labelled histogram

Display
 histogram

The histogram routine in excel is found in the Data Analysis section of the Data tab. If the Data
Analysis section does not show in the Data tab, you will need to load the Analysis Toolpak. Go
to File tab, options, Add-ins to load the toolpak.

Once we have a distribution, we can use it to calculate the probability of AvDiff, our observed
statistic (St = -0.04286). We will use a two-tailed test. That is, we will consider more extreme
positive and more extreme negative values. The probability Pr{|X| < St} is the proportion of the
distribution that is equal to or more negative than the observed negative value St = −0.04286.
The probability Pr{|X| > St} is the proportion of the distribution that is equal to or more positive
than the positive value St = +0.04286. We count the number of values in both tails, the left tail
N(X < St) and the right tail N(X > St). We add the tails to obtain the proportion in both tails of
the distribution.

Name the variable
Apply histogram routine.

hist(RDvector,breaks=15,

xlab="randomized difference",

main="Figure 1. Randomized difference in mean age of

first reproduction in two strains of Daphnia

longispina.")

MTB > name c6 ‘randiff’
MTB > histogram c6

8

sort(RDvector)

length(RDvector)

k3 #Avdiff

summary(RDvector<(-abs(k3))) #lower tail

summary(RDvector>(abs(k3))) #upper tail

Laboratory #4. Randomization tests
Pseudocode for calculating a probability Pr{|X| < St} from a histogram

Sort to new column
 N(X < St)
 N(X > St)

Pr{|X| > St}

To calculate the probability find the sort command in your package, then use it to put the
randomized values that you have accumulated into a new (sorted) column. With only 100 values
you can count values from the top down to the observed difference St = +0.04286, then count
from the bottom up to the observed difference St = −0.04286. In packages with a spreadsheet
each row is numbered, so you can note the row number of the value nearest St, to obtain the
count in both tails.

Use your package to compute the following:
 N = Number of randomized differences = _______

 nneg = Number of randomized differences more negative than –0.043 = _______

 npos = Number of randomized differences more positive than +0.043 = _______

For future reference here is R-code to sort, display the sorted values, and give you a count of the
values less than the observed difference (in k3, from above) and greater than the observed
difference.

Sort values
Find closest value to St in left tail (small values)
Count the number of values less than St
Find closest value to St in right tail (large values)
Count the number of values greater than St
Add the counts, divide by the number of values in the histogram

9

Laboratory #4. Randomization tests
Your Name _________________________

Now compute the p-value for the observed outcome, a difference of –0.043 hours.

 % of the outcomes less than the observed outcome of –0.043: negn
N

= ______

% of the outcomes greater than + 0.043: posn
N

= ________

% of the outcomes that were either greater than +0.043

 or less than –0.043 neg posn n
N
+

= ________

This is your estimate of the Type I error (p-value) under the null hypothesis that the true
difference is zero (a two-tailed test). The reason for computing a two-tailed test is that at the
outset we had no idea whether Strain1 would reproduce earlier or later than Strain2. Hence the
need to calculate the probability of either a negative or a positive difference in timing.

Attach your frequency distribution of randomized differences for the Daphnia data to this

page. Label both axes of the frequency distribution.

It turns out that assumption free p-values by randomization in this example are close to the value
(p = 0.908) calculated from the F-distribution with 1 and 12 degrees of freedom (F1,12 = 0.014).
MTB>cdf F 0.014, 1, 12
pf(0.014, 1,12,lower.tail=FALSE)
The calculation of this F-ratio (F1,12 = 0.014) will be explained later in the course, as will the
assumptions for using the cdf command.

10

Laboratory #4. Randomization tests
Name __________________

Write-up for lab #4.

1. Complete the previous page and submit annotated pdf file online.
 Note: Adobe Reader can be used to fill in the blanks on the lab handouts.

Adobe Reader is free to download.

2. Carry out a randomization test for data in Box 13.12 of Sokal and Rohlf (1995),

which shows mean litter size of two strains of Guinea pig, compared over 9 years.

 Assign a symbol to your statistic (difference of means) _______

 State the observed value of your statistic: ______ = _______

Report your assumption-free p-value via randomization __________

Make a frequency distribution of at least 200 randomized outcomes, be sure to label both
axes of your graph. Submit your graph online as a separate pdf file under Lab 4.

This lab illustrates some of the trade-offs in the choice of a statistical package.
1. Spreadsheet. This lab can be executed in a spreadsheet. However, the computational
formula is never visible in a spreadsheet, except by selecting a cell, clicking on the formula
in the cell, and following the components of the formula to other locations in the spreadsheet.
The computational sequence is difficult to follow when formulas are linked across cells.
Because we can’t see the linkages, spreadsheets do not lend themselves well to
understanding model based statistics, and so will not be used in the remainder of this course.
2. Statistical package with spreadsheet and pull-down menu. Model-based statistics are
readily grasped in any statistical package with a high quality pull-down menu, such as
Minitab, SPSS, SPlus, JMP. MUN recently stopped supporting Minitab, so help with SPSS
will be provided in 2018. Model based statistics are readily grasped by3rd and 4th year
undergraduates using any statistical package with a GLM routine, regardless of whether they
choose to use a pull-down menu or code.

You don’t have to use code, to grasp and use model based stats!

3. Statistical packages with readily programmable code. Minitab code for all the labs is
available on the course website. It is shown in the labs because it is simple and easy to
grasp. SAS code is available for some of the labs but MUN long ago ceased supporting it
because of its expense. R-code is shown in the labs because of its efficiency, versatility, no
cost as freeware, and rapidly expanding use by professional statisticians. Documentation of
R-code is often incomprehensibly technical. Help on the web is abundant and uneven in
quality. R-code has a steeper learning curve than the code in Minitab and SAS. SPSS has
easily used pull-down menus for GLM and a wide variety of error structures for General and
Generalized linear Models. SPSS code is useful for storing and re-running an analysis set
up with the menu. The code itself is not easily understood. Simple calculations with SPSS
code (k3 = mean(Strain1)-mean(Strain2)) are difficult. In a research setting clear code (R,
SAS, Minitab) is an important way to document your analysis. A pull down menu won’t do
it.

