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Laboratory #5a. 
The General Linear Model: Regression 

 
 The purpose of this laboratory is to give you practice in using the General Linear Model in 
the analysis of data.  The GLM includes many of the most frequently used procedures in 
statistical analysis--ANOVAs, t-tests, regressions, and analysis of covariance ANCOVA. The 
GLM applies in exploratory analysis (What is the best model?), in evidential analysis (What is 
the evidence?), and inferential analysis (What is probable, given a model?).   

The GLM is a linear model (additive effects) with a normal probability model (Seber, G.A.F. 
1966. The Linear Hypothesis: A General Theory. London, Griffin). Consequently, examination 
of residuals relative to the normal error assumption is an important part of the execution of the 
GLM in all three modes. In exploratory analysis, we examine residuals in order to diagnose 
whether our description of pattern in the data (the formal model) is adequate.  If the residual 
versus fit plot shows a horizontal band, with no bowls or arches, then we have arrived at an 
adequate description of pattern in the data.  If the residuals do show pattern, then we can use 
observed patterns in the residuals to construct a better model of the relation of the response 
variable to explanatory variables.  
 In an evidential analysis, we examine residuals in order to diagnose whether the probability 
model we are using is appropriate for the data.  The general linear model assumes a normal 
(fixed error) model and so we will be looking at whether the residuals vary in a systematic way 
with the fitted values, or with any of the explanatory variables. 
 In inferential analysis, we examine residuals in order to diagnose whether our data meet the 
assumptions for computing long run probabilities from F, t, or χ2 distributions. A p-value 
calculated from these distributions cannot be trusted if the residuals are correlated, 
heterogeneous, or non-normal. If the residuals deviate substantially from normality, we cannot 
make appeal to the law of large numbers when we calculate probabilities. Some people think the 
data must be checked for “normality” before undertaking analysis. This is a widespread 
misunderstanding of regression and ANOVA. 
 
 Once you have completed the lab, you should have 
 

- capacity to undertake regression analysis using either a GLM or regression routine in a 
statistical package. 

 
- a working knowledge of the mechanics of residual analysis in a statistical package 

 
At this point make sure that you have two data sets 

TriboliumWeights.txt Box 14.1 in Sokal and Rohlf 2012 
TriboliumSurvival.txt Box 14.4 in Sokal and Rohlf 2012 

 
The data sets can be found on the course website.   
https://github.com/DavidCSchneider/StatisticalScience/tree/main/Data/Labs 
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Laboratory #5.  Regression 
 
Analysis #1.  Tribolium weight in relation to humidity.  Regression routine. 

Most statistical packages contain separate routines for regression and for the general linear 
model.  Analysis #1 demonstrates the general linear model and residual analysis with a 
regression routine.  The example comes from a Box 14.1 in the text by Sokal and Rohlf (1995).  
The research questions are: 

Does weight loss in the flour beetle Tribolium depend on humidity ? 
If it does, what is the rate of weight loss in relation to humidity ? 

To begin, we open the data file and look at the description of the data. From this information we 
list the response and explanatory variables along with units, the type of measurement scale, and a 
symbol for use in the model we will write.  Both the response and the explanatory variable are on 
a ratio type of scale so our model will be a regression. 
 

Variable Symbol Units Type Role 
Weight Loss WLoss mg ratio Response 
Percent humidity PctH % ratio Explanatory 

 
The model is  𝑊𝐿𝑜𝑠𝑠 ൌ 𝛽௢ ൅ 𝛽 𝑃𝑐𝑡𝐻 ൅ 𝜖௡௢௥௠௔௟ 𝛽௢  = grand mean,   𝛽 = slope,  normal error 
 
The regression routine will report: 𝑊𝐿𝑜𝑠𝑠 ൌ  𝛼 ൅ 𝛽 𝑃𝑐𝑡𝐻 ൅ 𝜖௡௢௥௠௔௟       𝛼 = Y intercept 
 

In Lab 4 you learned how to import data from a text file. If you are using a package with a 
spreadsheet interface, go ahead and copy the data from the text file and paste it into your 
package. For users of R studio, an excel file version of the ASCII (text) file is available on the 
course website at the same location as the text file. After downloading the excel file, go to R-
studio and import the data file as follows. 
 

 Define Data 
from file 

 
 

 
 

Here is pseudocode for regression, analysis of a Y-variable against the X variable  

 
 

Write the model 
 

Run regression  
 Extract 

residual diagnostics 
 

Evaluate model 

 
  

Import DataSet   (Environment window in RStudio) 
Choose Excel 
Browse to find data file 
Examine dataset that appears 
Import to a data object in R 

Define the response variable, Y 
Define the explanatory variable X. 
Write the model. 
Define the data set in statistical software package 
Run the analysis to obtain parameters, fitted values, residuals 
Save residuals and fitted values. 
Plot residuals vs fitted values to check linear assumption. 
Revise model if linear assumption not met. 
Evaluate residuals for homogeneity and  normality. 
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Laboratory #5.  Regression 
 
Analysis #1 (continued). 
 

 Here is line code for Minitab, then for R. 
 Plot Data 

  Run regression 
  Obtain residuals 

 and fits 
 
 

View imported data 
Label columns 

 Plot Data 
 

 
 

   
 

Run regression 
 

Obtain residuals 
 and fits 
 
Residuals and fits are saved for later use in both menu-based and code based packages. 
 
When we use the general linear model (as in regression) we make assumptions about both the 
structural part of the model (𝑌෠) and about the error distribution.     𝑌 ൌ 𝑌෠ ൅ 𝜀௡௢௥௠௔௟  
We will begin with the assumptions about the structural part of the model, then move to the 
assumptions about the error distribution. 
 
Assumption 1.  A straight line model is appropriate. 
To check this assumption we look at the residual vs fit plot.   
Some statistical packages produce this plot automatically as an option for regression output. 
 

 Model linear? 
 

 Model linear? 
 

 
 
There are no obvious bowls or arches in the plot. Assumption 1 is met. 
 
  

MTB > plot 'WLoss' * 'PctH' 
MTB > regress 'WLoss' 1 'PctH'; 
SUBC> fits c4 ; 
SUBC> residuals c5. 
MTB > name c4 ‘fits’ c5 'res' 

View(TriboliumWeights) 
names(TriboliumWeights)=c("WLoss","PctH") 
with(TriboliumWeights,plot(PctH,WLoss, 
  xlab="Relative humidity (%)", 
  ylab="Weight loss (mg)", 
  main="Figure 1. Tribolium weight loss relative to  
           humidity")) 

MTB > plot 'res' * 'fits' 

plot(fit1,res1,     
     ylab="residuals", 
     xlab="fitted values", 
     main="Figure 2. Tribolium weight loss 
     residual vs fit plot") 

Wtmod<-lm(WLoss~PctH,data=TriboliumWeights) 

res1<-resid(Wtmod) 
fit1<-fitted(Wtmod) 
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lag.plot(res1, 
         main="Figure 3. Lag plot. Tribolium weight  
         loss residuals", 
         diag=FALSE, do.lines=FALSE) 

summary.lm(Wtmod) 
anova(Wtmod) 

Laboratory #5.  Regression 
Analysis #1 (continued). 
So, we’ll continue with the straight line regression model. 
In most packages executing the regression routine produces the parameter estimates and a 
measure of fit r2.   With R we need to issue a command to extract coefficients and the ANOVA 
table from the model object. 
 

Obtain estimates 
Obtain ANOVA table 

 
Write the regression equation with parameter estimates, immediately below the structural model. 
The structural model is: 𝑌෠ ൌ 𝛼                   ൅ 𝛽௫              𝑋                  
 
Regression equation:      WLoss = __________ + ________PctH 
 
Statistical packages report results in the familiar slope intercept form, as above. The statistical 
package calculates the Y-intercept α  from βo. Try this calculation yourself.  Use your package to 
calculate the means for Y and X, then the Y-intercept α. 
𝑌ത ൌ  𝛽௢ ൌ  _____________ 
𝑋ത ൌ  ___________ 
𝛼 ൌ 𝛽௢ െ 𝛽௫𝑋ത __________ 
 
Next we move to the error component of the GLM.   The normal error model rests on four 
assumptions.  To diagnose these we use the residuals. 
   
Assumption 2a. Homogeneous residuals.   

This is the most important assumption.  Violations of this assumption will have the greatest 
biasing effect estimates of parameters and on the p-value.  This assumption is checked by going 
back to the residual vs. fit plot.  We look at this graph in a new way—Do we see strong 
differences in vertical spread, from left to right in the plot? 
Do you see any strong deviations from a homogeneous  
band in the residual vs fit plot for the Tribolium data ?    ___________ 
Assumption 2b.  Residuals sum to zero.   

Statistical packages estimate parameters in a way that makes this true, so we don’t need to 
check this assumption.  
Assumption 2c.  Independent residuals.   

One way to check the independence assumption is to plot the errors in the order in which the 
data were collected.  Another way is to plot each residual against neighboring values in space.  
Use Help in you package to find the routine for a lag plot to check this assumption.  

 Errors 
 independent? 
 

 
  Errors
 independent? 

 
The regression residuals from the analysis of Tribolium data show no obvious upward or 
downward  trends, so residuals are taken to be independent.   

 
Laboratory #5.  Regression 

MTB > let c10 = lag('res') 
MTB > plot c10 * 'res' 
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MTB > nscores 'res' c30 
MTB > plot c30 'res' 

MTB > histogram 'res' 

Analysis #1 (continued) 
 
Assumption 2d. Normal residuals.   

This assumption tends to attract more attention than the homogeneity assumption, when in 
fact violations of the homogeneity assumption often have a greater distorting effect on parameter 
estiamtes and the p-value estimate.  The two commonest graphical diagnostics for this 
assumption are histograms and normal probability plots. 
 
Assumption 2d. Normal residuals. Checked with a histogram. 

If the normality assumption is met the residuals will cluster symmetrically around their mean 
(zero).  If the assumption is not met the histogram will deviate substantially from a bell-shaped 
curve.   Find the histogram routine in your package and check this assumption now.  
 

 Errors normal? 
 

 Errors normal? 
 

 
Evaluation of the histogram is difficult when there are few residuals, as in the Tribolium data. 

The visual impression from a histogram can depend very much on the number of classes used to 
construct the histogram.  Use your package to replot the histogram with fewer classes. A 
symmetrical distribution is expected so use an odd number of classes (5 instead of 9).   
To accomplish this, revise the code (SAS, Rstudio) or re-run the routine from a menu. 
In the box below describe the differences in the two histograms. 

 
Assumption 2d, Normal residuals. Checked with a normal probability plot. 

We can check the normality error assumption by comparing the cumulative distribution of the 
residuals to the cumulative distribution of the normal distribution, which is sigmoid (S-shaped).  
Normal probability plots use a suitable transformation to straighten out the sigmoid curve into a 
straight line that rises diagonally.  Normal residuals fall on the diagonally rising straight line, 
while non-normal residuals will deviate from the line.  Find the normal plot routine in your 
package and check this assumption now. Here are line code versions. 
 

 
Errors normal? 

 
 
 
The plot shows some deviation from the diagonal line, with too many residuals near zero. 
  

hist(res1,breaks=9, 
     xlab="residuals", 
     ylab="frequency",main="Figure 4. Tribolium 
     weight loss") 

qqnorm(res1) 
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Laboratory #5.  Regression 
Analysis #1 (continued) 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
Evidential strength and effect size. 

Having evaluated the model, we then calculate a measure of the strength of the evidence for 
the model with the parameter 𝛽መ ൌ െ0.053 compared to a model with 𝛽 ൌ 0.  The likelihood can 
be calculated from the explained variance r2 and the sample size n. 
 

𝐿𝑅 ൌ ሺ 1 െ 𝑟ଶሻି௡/ଶ  
 
From the regression output we see that 𝑟ଶ ൌ 0.9787  with n = 10. 

LR = (1−0.9787)-10/2 = 2.3 x 108 
The estimated effect size was  𝛽መ ൌ െ0.053 mg per 1% change in humidity.  This effect size was 
far more likely than an effect size of  𝛽 ൌ 0. It was 108 times more likely than  𝛽 ൌ 0. 
 
Inference from the likelihood ratio. 

Hypothesis testing uses the likelihood ratio to make a decision about the null hypothesis, no 
change.  Is hypothesis testing appropriate? In this example we have an experiment from a lab 
where beetle cultures were maintained in controlled temperature chambers.  The experiment 
could have been repeated many times under nearly identical conditions.  The population (target 
of inference) was a potentially large number of repeats, large enough to allow appeal to the law 
of large numbers and the normal distribution.  The probability of the estimated slope of  𝛽መ ൌ
െ0.053 under conditions of fixed humidity (PctH fixed, hence 𝛽 ൌ 0) is calculated from the F-
statistic, which in turn is based on the LR. From the regression routine output we see an F-ratio 
of 367, an extremely improbable result (p = 5.7 x 10-8) that we reject at the 5% criterion. When 
we use hypothesis testing we are restricted to a statement of rejection of the Ho.  We cannot 
“accept the alternative” having rejected Ho.  We cannot say we accept HA when Ho is not 
rejected. And we cannot even say we accept the Ho when it is not rejected.    If we want to say 
something about the alternative hypothesis, we use a likelihood ratio. 
  

Should we use hypothesis testing to check for normality? 
 
Statistical packages contain tests of normality, which yield a p-value made against a 5% 
criterion.  While a test of normality is useful in some circumstances, it guarantees a bad 
decision when examining residuals.  A test of normality will reliably produce a small p-value 
when sample size is large, even though the deviations are small.  A test of normality at small 
sample sizes will often produce a large p-value, even though there are substantial deviations.  
So a test of normality usually results in a decision that the assumption is not met when sample 
size is large, when deviations from normality become less important.  A test of normality will 
usually fail to detect large deviations from normality when sample size is small, when 
deviations from normality are important. Statistical tests of the normality assumption can be 
relied upon to lead to the bad decisions. 
For a fuller treatment of the topic see Johnson (1999) and more recently, Läärä (2009). 
Johnson, D.H. 1999. The insignificance of statistical significance testing. Journal of Wildlife 
Management 63:763-772 
Läärä, E. 2009. Statistics: reasoning on uncertainty, and the insignificance of testing null. — 
Ann. Zool. Fennici 46: 138–157. 
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MTB > plot 'WLoss' * 'PctH' 
MTB > glm 'WLoss' = 'PctH'; 
SUBC> covariate ‘PctH’; 
SUBC> fits c4 ; 
SUBC> residuals c5. 
MTB > name c4 ‘fits’ c5 'res' 

PROC PLOT data=srbx14_1; plot WLoss*PctH; 
PROC GLM data=srbx14_1; 
  model WLoss=PctH; 
  output out=out1 r=res p=pred; 
PROC PLOT data=out1; plot res*pred/vref=0; 
PROC UNIVARIATE data=out1 normal; var res; 

 Laboratory #5.  Regression 
 

Do we need to recompute the p-value? 
The p-value in hypothesis testing assumes that errors are independent, homogeneous, and 

normal.  In the evaluation of the analysis of the Tribolium data, we found some evidence of 
deviations from normality.  We have already learned a remedy: recompute the p-value by 
randomization.  This produces a p-value free of the assumptions required for the F-distribution.  
In most packages this is a lot of work.  So we ask at this point whether the extra work is 
necessary.   If the p-value is close to the criterion for significance (α = 5%) then an incorrect p-
value can lead to an erroneous decision.  But if the p-value is far from the criterion (say by a 
factor of 5 or a factor of 1/5) then a better p-value won’t change the decision.  No matter how 
badly the assumptions are violated, p-values from the F-distribution almost never deviate from 
the randomization p-value by factors as large as 5 or 1/5.  For the Tribolium data the F-statistic 
was huge (F = 367) and hence the p-value is minuscule (p < 0.001).  If we recompute the p-value 
via randomization we get a more accurate p-value, we put time into the effort, but the decision 
(that the slope of the regression is not zero) will not change.  So for this lab we are not going to 
put time into an effort that won’t change our decision.  We will use judgement to reject the null 
hypothesis, that weight loss does not depend on humidity. 
 
Analysis #2.  Tribolium weight loss in relation to humidity.  GLM routine. 
 
Regression routines assume all explanatory variables are continuous.  GLM routines allow both 
continuous and categorical variables. The lm command in R is a GLM routine allowing both 
continuous and categorical variables. The glm command in R and Stata performs a Generalized 
Linear Model, which allows non-normal error structures.  So if you are using R you have already 
used a GLM routine and you can skip to Analysis #3.  If you are using SAS or Minitab, you can 
acquaint yourself with the GLM routine output by going back to the beginning of  the analysis of 
the Tribolium data and repeating it with the GLM command.  .. 

 
Run GLM 
regression 

in SAS 

 
 

 
Run GLM 
regression 
In Minitab 

 
 

Re-running the analysis to compare outputs should not take more than about 5 minutes, as the 
routines are very similar in structure and output in these two packages. 
If you are using SPSS or STATA, you will be using the anova command where the 
explanatory variable is declared as continuous, as in the Minitab code shown here. This may take 
longer because of the differences between the regression and anova routines in these two 
packages. Because all of these routines store residuals, we can use the same simple graphical 
diagnostics shown already for any GLM. 
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MTB > glm 'PctS'  =  'Egg’; 
SUBC> covariate '[Egg]'; 
SUBC> fits c4; 
SUBC> residuals c5. 
MTB > name c4 'fits'  c5 'res' 

Laboratory #5.  Regression 
. 
 Box 1 (Analysis 2) 

 
 
Analysis #3.  Tribolium survival in relation to egg density.  GLM routine. 
 

The next example demonstrates regression analysis of more than one Y-value for each X-
value.  The data set will be another text example, taken from Box 14.4 in Sokal and Rohlf 
(1995).  The research question is, Does Tribolium survival depend on density?   

As before we open the data file TriboliumSurvival. We look at the description of the data. 
From this information we list the response and explanatory variables along with units, the type of 
measurement scale, and a symbol for use in the model we will write.  Fill in the table. 
 

Variable Symbol Units Type Role 
PctS Response 

 asinS    
Eggs Explanatory 

 
Now, using the symbols, write the model for PctS in slope-intercept form.  
 
 
 
At this point it is a good idea to close your previous session, saving any work you need, and start 
a new session.  Then download the csv version of this file (on the course website) to your 
desktop. You can either open it to copy and paste, or browse for it and import it.  Bring in both 
survival and arcsin(survival), as well as egg density. 
 

 Define Data 
 from file 
 
GLM routines allow categorical explanatory variables as well as regression variable. Minitab 
assumes categorical and so a special command is required to declare a regression variable. 
 

 
 

Run GLM 
 

 
 

The SAS GLM routine (shown in Analysis 1) assumes regression. 
  

After you have run the GLM routine make the following comparisons. 
 
Display and compare the estimates of the Y-intercept α (GLM and regression routines) 
Display and compare the estimates of  the slope βx.   
Display and compare the ANOVA tables.  Same structure?  Same F-ratio ? 
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str(TriboliumSurvival) 

 

 

 

 

 

Laboratory #5.  Regression 
Analysis #3.  (Continued). 
 

R selects a data class when the data were imported. R tries in turn  logical, integer, 
numeric and complex, moving on if any entry is not missing and cannot be converted. If all 
of these fail, the variable is converted to a factor.    

R-studio might (or might not) tell you what it did. To find out what R did, issue the command: 
 
 
 

Alternatively you can go to the environment window, click list, and see the same thing. You’ll 
see that two of the variables were read in as numeric, one was read as integer, and none 
were read in as factor, i.e. as a categorical variable.  For now, because we are using 
regression, integer is ok for the response variable.  In Lab6 we’ll use the functions 
as.factor and as.numeric to manage categorical variables in R. 

Using what you learned in Analysis #1, run GLM regression for the Tribolium survival data. 
 
 

 Run GLM 
 

Model Linear? 
 

Residuals homogeneous? 
 

Residuals independent? 
 

Residuals normal? 
 

The response variable is a percentage, and hence we might expect the residuals to be non-
normal.  Instead, we found that the residuals were normal but not homogeneous. 
For decades, textbooks have recommended the arcsin transformation of response variables that 
are percentages. The arcsin transform became a ritual, apparently no-one checked to see if there 
was a problem or if the arcsin ritual eliminated the problem. Let’s see if the arcsin changes the 
residual diagnostics.  Redo the analysis, using the column of arcsin transformed data.  This will 
produce the ANOVA table shown in Box 14.4 of the Sokal and Rohlf 1995 text.  
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 Box 2 (Analysis 3) 
 
 

 

 

 

 
 

When assumptions are not met, we next ask whether it is worth taking the time to recompute a p-
value by randomization. 
 Box 3 (Analysis 3) 
 
 
 
 
 
 

  

For the analysis of arcsine transformed survival: 
 
________Is the straight line assumption valid ? (any bowls or arches in residual vs fit plot?) 
 
________ Are the residuals homogeneous ?     (No cones or other patterns in residual vs fit plot?) 
  
________ Are the residuals normal ?    (use normal scores/qqplot) 
 
________ Did the arcsin transform change the residual diagnostics concerning normality ? 
 
For more on the topic of the arcsin transform see Warton and Hui 2011 Ecology 92: 3-10. 

Is the sample size small (less than 30) ?                  . 
Is the p-value close to α = 5%   ?                  . 
Given your answers, is the decision based on this p-value likely to change if we obtain a more 
accurate p-value by randomization ?                   . 

Extra.   ANOVA tables and F-ratios for regression with several Y-values for each X-value. 
 
The recommended procedure with several Y-values is to form the F-ratio based on all of the 
observations, not on just the means for each group (Freund, J. 1971. Mathematical Statistics. 
Prentice-Hall).  Using all of the data gives proper weight to each group–the larger the sample 
size, the greater the weight for that group. Proper weighting is also achieved by using the sample 
size when using the means.  The two methods (all of the data, or means weighted by sample size) 
should produce the same ANOVA table and parameter estimates.  Try carrying out the regression 
analysis using means weighted by n = sample size. This will produce the correctly weighted 
ANOVA table in Box 14.4 of Sokal and Rohlf 1995. 
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Laboratory #5.  Regression 
 
 
 
Write-up for this laboratory. 
 
Please do not hand unlabelled computer output!  Instead, cut sections of output to a document 
and label each section in the document.  If you paste tabular results such as ANOVA tables into 
your document, use a non-scalable font (such as Courier 10) to display this material 
correctly.  Otherwise the material will be distorted and nearly unreadable.  Make sure to label all 
plots on both axes with name of variable and units where appropriate, and to add a caption with 
source of data and type of plot.  To be sure they have everything, students often make a rough 
draft of their write-up before leaving the lab. 
 
Analysis #1 

Present your results from the analysis of the Tribolium weight data, using the following 
simplified format.  

 
A.Write the statistical model, state HA/Ho pair about the explanatory variable. 
B. Present the ANOVA table with F-statistic. 
C. Show residuals vs fit plot, and comment on whether straight line assumption is met. 
D. State whether residuals are homogeneous, normal, and independent.  Include appropriate 
 plots with comments on each assumption. 
E. Report decision- Ho, reject or not rejected, with report of statistic, n, and p-value. 
F.  Report effect size (slope parameter with units)  If Ho rejected interpret effect size with 

reference to the research question. 
 
Analysis #2 
  If appropriate (packages other than R), complete Box 1 and comment on the advantages and 

disadvantages of the regression routine compared to the GLM routine.  
 
Analysis #3 - Tribolium survival. 

Calculate the LR for untransformed and for transformed data.  Comment on the difference 
(Small? Large?), with respect to strength of evidence (LR), homogeneity of residuals, and 
normality of residuals. 

Support your comments on the differences by referring to labelled residual plots for both 
survival and arcsin(survival) in relation to density. 

Complete Boxes 2 & 3.  Refer to residual plots in completing Box 2. 
 
Show plots for untransformed and arcsin transformed data in your document at steps C and D in 
Analysis #1.  Make sure the plots are clearly labelled as unstransformed or arcsin transformed 
data.   

 


